028-8525-3068
新闻动态 News
News 行业新闻

文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素

日期: 2023-03-17
标签:


文献解读



原名:Elevational variation in soil phosphorus pools and controlling factors in alpine areas of Southwest China

译名:西南亚高山生态系统土壤磷库海拔变化及其控制因素

期刊:Geoderma

IF:7.422

发表时间:2023.1.26

第一作者: Jinsheng Li

01
摘要
Literature abstract
文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素

土壤磷是地球生态系统中重要的生命元素,对地球生态系统的稳定性及其可持续发展具有重要意义。然而,不同土壤磷库的季节和沿海拔梯度变化的调控机制尚未清楚。本研究中,探究了玉龙雪山不同海拔梯度下(2600m~3900m)表层土壤(0 ~ 15 cm)磷库季节变化包括总磷(TP)、有效磷(AP)、无机磷(IP)、有机磷(OP)、不稳定磷、中等不稳定磷和稳定磷,测定叶片养分含量、土壤性质、微气候和微生物参数。研究发现,所有土壤磷组分在中海拔(2900 m和3200 m)均达到最大值,可能是由于微生物活性较强和适宜的土壤气候条件促进了磷风化。同时,土壤AP库的海拔变化与叶片P含量密切相关。其中,大部分土壤P库无季节性变化,除了湿季的AP高于旱季,可能是由于湿季更高的温度和微生物活性促进了P的释放。

此外,我们发现微生物磷、酸性磷酸酶和可溶性有机碳对不同磷库的影响强于其他土壤因子,土壤环境对活性磷和中活性磷有较强的相互作用。综上所述,研究结果揭示了玉龙地区土壤磷库的海拔变化及其潜在机制,为研究土壤磷动力学对环境的响应提供了重要的理论依据。

山地生态系统。

关键词:磷库;森林土壤;土壤环境;空间分布;山地生态系统

02
研究背景
Research background
文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素


(P)是生态系统中重要的营养元素,也是地球上所有生命基础化学组成之一,且土壤是陆地生态系统中最大的磷库。气候、地形、土壤发育阶段、微生物活性等因素对陆地生态系统土壤P库的输入和输出都起着至关重要的作用。以往有研究表明,土壤生物化学过程和植物的基因型可能影响P在土壤和植被之间的转化。同时,土壤P活性受全球气候变化的强烈影响。虽然大多数研究表明土壤有效磷是山地生态系统中植物生产力的主要限制因子,但很少研究关注土壤P库,特别的,典型山地生态系统不同磷库转化的季节变化。因此,研究具有代表性的山地生态系统磷库状况及其影响因素,有助于了解山地生态系统对全球变化的响应,对森林生态系统的稳定和磷的可持续利用具有深远意义。

03
研究内容
Research contents
文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素

基于此,我们探讨了玉龙雪山土壤P库的海拔和季节变化及其调控的微生物和植被过程。

研究目的:

(1)探究土壤各P库的含量的海拔和季节变化;

(2)量化气候和关键土壤性质对土壤各P库含量的相对影响。

科学假设:

(1)在长期土壤发育过程中,低海拔的不同土壤P库和P生物有效性显著高于高海拔;

(2)湿季的土壤P生物有效性更高,可能由于海拔和季节变化的影响,包括生物(微生物和植被)和非生物(土壤理化指标)因素,对土壤磷库的转化和生物磷的有效性有显著影响。

研究方法:

我们的取样地点是在丽江的高山植物园——玉龙雪山南麓,保护区无干扰,海拔约2600—3900m。根据构造样带的原则,沿海拔梯度和代表性植被类型,选择在海拔2600—3900m之间每200-300m划定6个海拔梯度。植被高度和密度随海拔的增加而逐渐降低。分别于雨季(7月左右)和旱季(1月左右)采集样本。

04
研究结果
Research results
文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素

1.植物性状,土壤性质和微生物属性

不同物种之间叶片C、N含量无显著差异,但不同海拔之间P含量差异显著(3500m最高,3200m最低)。叶片C:PN:P随着海拔升高而降低,在低海拔处更高(<3200m),而叶片C:N2600m和3200m处较高。ST和MBP随海拔升高而降低,其他气候因素、土壤性质和土壤微生物属性随海拔升高呈不规则变化。湿润季土壤ACP、MBN、MBC和MBP均较高。

文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素


文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素


2.土壤P库

土壤AP、TP、IP和OP含量随着海拔变化存在显著差异,其中中间海拔梯度(2900m和3200m)的含量较高。AP含量在湿润季更高,稳定性P含量在低海拔处更高。基于PCA分析,季节对2900m和3200m海拔梯度的土壤P库变化的影响更大。且海拔和季节变化显著影响ACP和MBP,在不同海拔梯度下,ACP在湿润季显著高于干旱季,随着海拔的升高,ACP和MBP呈降低趋势,除了湿润季的ACP


文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素

文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素


3.不同季节和海拔梯度下土壤P库变化的调控因子

随机森林分析表明,土壤磷库受叶片氮、磷含量的影响较大。生物因子(ACP和MBP)对土壤P库有很大的影响,尤其是MBP,且ACP对湿润季土壤P库影响大于干旱季。土壤C、N含量,尤其是可溶性有机碳和硝态氮,对不同P库产生强烈影响。土壤理化性质、微生物参数和他们之间的交互作用也强烈影响土壤P组分的变异,其中土壤微气候,如土壤水分和土壤温度对土壤稳定P和中等活性P无显著影响。皮尔逊相关性分析表明,叶片N、P含量对土壤P库含量影响最大,不同磷库与环境因子的交互作用在湿润季强于旱季。偏相关分析,不同磷组分与土壤性质密切相关,与其他微生物参数相比,控制MPB后,不同磷组分与土壤性质的相关系数降低。


文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素

文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素

文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素


文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素

偏最小二乘路径分析结构方程模型(SEM)揭示了气候因素、植物、土壤、微生物参数等与土壤P库的关系。进一步表明,土壤气候参数主要通过影响土壤和微生物特性间接影响土壤磷。土壤微气候仅在旱季对土壤性质有显著影响,且微气候对土壤微生物属性的影响与季节无关。


文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素



文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素


05
结论
Conclusion
文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素

我们的研究结果表明,海拔和季节变化引起土壤微生物参数和植物特性的改变,并对土壤不同P库和P生物有效性有很大的影响。2900m和3200m海拔处土壤P库含量显著高于其他海拔,同时其C、N含量和微生物活性均更高。此外,AP在湿润季含量显著高于干旱季,而其他P库无显著变化,土壤温度、土壤水分和微生物活性也是在湿润季显著高于干旱季,在对不同磷库和生物(微生物参数和植物性状)和非生物(土壤理化性质)特性的分析中,我们发现,大多数P库与DOC、MBC、ACP显著正相关,而与土壤NO3-N呈负相关。

研究结果为玉龙雪山不同海拔梯度下土壤磷库变化规律及其潜在调控机制提供了实验依据。


论文id:DOI:10.1016/j.geoderma.2023.116361



END

 ◀栢晖生物▶ 

 特色检测指标

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素、CUE

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情


服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼14

文献解读|西南亚高山生态系统土壤磷库海拔变化及其控制因素





  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务