028-8525-3068
新闻动态 News
News 行业新闻

文献解读|土壤碳储量由颗粒和矿物结合有机质决定

日期: 2023-03-09
标签:
文献解读|土壤碳储量由颗粒和矿物结合有机质决定
点击上方”蓝字“关注我们吧


原名:Soil carbon storage informed by particulate and mineral-associated organic matter

译名:土壤碳储量由颗粒和矿物结合有机质决定

期刊:NATURE GEOSCIENCE

IF:21.531

发表时间:2019.11

第一作者:Francesca Cotrufo

文献解读|土壤碳储量由颗粒和矿物结合有机质决定

01
摘要

为缓解气候变化实行的有效陆地解决方案要求采取行动,能最大限度地提高土壤碳储量,同时不产生多余的氮。在土地管理的固碳工作中最常依据大量非根际土壤碳储量,而不考虑碳的储存形式、容量、持久性和氮需求。本研究中,介绍了欧洲范围内的数据库,包括土壤有机质物理分组,以确定大陆尺度森林和草地表层土壤碳和氮储量及其在矿物结合和颗粒有机物质之间的分布。草地和丛枝菌根林将更多的土壤碳储存在矿物结合有机碳中,这种有机碳更持久,有较高的氮需求,饱和程度也更高。

外生菌根森林将更多的碳储存在颗粒有机物中,这些物质更容易受到干扰,但对氮的需求更低,并可能无限积累。矿物结合有机质和颗粒有机质中碳的分配和碳氮比影响土壤碳储量,并介导其他变量对土壤碳储量的影响。了解矿物结合有机物与颗粒有机物中有机物质的物理分布可以为土地管理提供信息,以实现氮高效固碳,这由生态系统中固有的土壤碳容量和氮可用性驱动。

02

研究背景

根据不断增加的大气二氧化碳浓度对全球气候的影响制定有效的大气二氧化碳捕获策略。碳在土壤有机质的储存被认为是其中一种策略。它还可以带来重要的共同利益,如改善土壤健康和提供土壤服务。温带森林和草地土壤占据了广阔的土地面积,通过管理可以储存大量的碳。因此,这些策略可以在未来的土壤C管理中发挥关键作用。

土壤中的有机碳储存在无数种不同的化合物中,其中许多化合物含有氮,或通过需要氮的微生物活动形成。此外,与植物生物量相比,SOM每单位C需要更多的N。因此,土壤储存碳的能力与氮的有效性有关。提高土壤碳储量而不增加氮肥或在土壤中固定氮,从而影响植物生产力是土壤碳封存策略的主要挑战。土壤碳氮比被认为是土壤固C潜力的一个指标,土壤碳氮比高的系统能够在单位N上积累更多的C。根据这一逻辑,外生菌根系统比丛枝菌根系统具有更高的碳氮比,而具有更高的固C潜力。

然而,施氮量对土壤碳储量的影响仍存在争议,长期施氮会增加土壤碳储量,也会减少土壤碳储量。最近的研究表明,如果SOM被广泛地分为颗粒有机质(POM)和矿物结合有机质(MAOM),则可以更好地描述土壤C的积累、持久性和对N有效性的响应。POM主要来源于植物,含有许多氮含量低的结构碳化合物,通过固有的生化抗性、团聚体物理保护或微生物抑制作用在土壤中持续存在。MAOM主要由富含氮的微生物产物组成,由于与矿物质的化学键和小团聚体的物理保护,在土壤中持续存在。这两个组分可以通过大小或密度能进行解析分离,并在周转时间上表现出差异,POM更容易受到干扰,并且比MAOM循环更快。

03

主要结果

1.土壤有机碳和N储存

表层矿质土壤(0-20cm)有机碳和氮储量随地理位置和土地利用覆盖而变化(图1)。总体而言,与阔叶林和草地相比,混交林和针叶林的平均有机碳储量最高。纯草地平均氮蓄积量最高。然而,这些土地覆盖之间的差异也可能是由于森林表土(0-20cm)中土壤有机碳(OC)的比例(占其总OC储量的50%)普遍高于草地(42%)。

文献解读|土壤碳储量由颗粒和矿物结合有机质决定

1欧洲森林和草地表层矿质土(0-20 cm)土壤OC和N储量的地理分布

欧洲森林和草地表层矿质土壤C/N被较好的限制。总体土壤C/N平均值为15.0±6.5,处于世界土壤C/N平均值(9.9-25.8)的分布范围内。针叶林和混交林土壤的C/N最高,变化更大(分别为22.5±7.1和20.0±6.2),而阔叶林(13.8±4.0)和纯草地(11.0±2.1)的C/N比针叶林和混交林低,更多的被限制(图2),这表明它们的标准差较小。在所有土地利用类别中,土壤C/N比值随fMAOM的增加而降低,并随C/NPOMC/NMAOM的增加而增加(图2)。总体而言,MAOM的C/N(12.6±4.7)低于POM的C/N(22.1±14.9;图2)。尽管植物的碳氮比在不同的植物种类和植物器官以及在对环境压力的反应中存在很大差异,但土壤微生物的碳氮比较小,真菌的碳氮比通常在4.5-15之间,细菌的碳氮比在3-5之间。因此,POM主要由部分分解的植物材料组成,其C/N比MAOM的变化更大(图2),而MAOM的来源主要是微生物。因为木质输入具有高C/N和POM的持久性的特征,与草地相比森林土壤中C/N、POM和MAOM一般更高(图2)。在森林中,C/NMAOM超过了微生物的范围,这表明在这些系统中,植物源性OM对MAOM的贡献更高,可能是通过植物输入物的体外微生物转化或植物源性颗粒结构在小(<53μm)聚集物中的保护作用。

文献解读|土壤碳储量由颗粒和矿物结合有机质决定


      图2欧洲森林和草地表层矿质土(0-20 cm)土壤碳氮比


菌根组合的类型也可能是土壤C/N和fMAOM的重要驱动因素,因为它们自身组织的降解性不同,降解有机质和释放矿物N的能力也不同。ECM真菌通过产生水解酶,而丛枝菌根真菌依赖腐营养有机物的腐烂和矿物N的产生。然而,在植物经济谱的框架下,植物性状直接控制植物残体的分解,从而影响土壤中C和N的循环。植物性状与菌根关联可能存在相互联系,但两者与土壤C/N或碳储量之间是否存在因果关系仍是一个悬而未决的问题。

文献解读|土壤碳储量由颗粒和矿物结合有机质决定


图3菌根关联的SOM与C/N箱线图


因此,菌根对土壤有机质及其C/N比值的影响在同一土地覆被类别内具有较好的评价效果;阔叶林提供了这种机会,因为它们的树木既有外生菌根又有丛枝菌根。当需要比较存在菌根关联的阔叶林和混交林的土壤C/N、C/NPOMC/NMAOMfMAOM以及MAOM和POM中的C储量时,观察到AM土壤的C/N比ECM土壤平均低24%(图3)。这与C/NMAOM的减少和fMAOM的增加(图3)以及MAOM中整体较高的C储存有关。这些发现证实并概括了最近对微生物残留积累的观察,与以ECM为主的温带森林相比,AM主导的温带森林中MAOM的土壤氮含量更高,后者在POM中储存了更多的C。总体而言,ECM和AM阔叶林土壤之间的这些差异导致ECM土壤有机碳平均储量高于AM系统,与全球趋势一致。ECM森林可能会在有机土层中积累更多的POM,从而导致这些森林的土壤C总体上增加。

2.对土壤碳封存的影响

欧洲草地和森林土壤的平均土壤碳储量在46-84MgCha1之间,针叶林或混交林的土壤碳储量最高(图1)。事实上,在所有实验样地中,随着土壤总碳含量的增加,MAOM和POM组分的碳储量呈现不同的动态变化(图4)。在碳含量较低的土壤中,碳在MAOM中的储存占优势。然而,当它饱和时,额外的碳储存只能通过POM的累积来实现。在整个土壤有机碳范围内,草地系统的MAOM比例高于森林,POM比例低于森林,特别是与针叶林相比(图4)。由于碳饱和,土壤碳储量与fMAOM呈高度负相关(图5)。C/NMAOM与土壤碳储量呈极显著正相关,这可能是因为MAOM是SOM的主导库(即fMAOM>50%;图2),而令人惊讶的是,C/NPOM似乎不那么重要,与土壤C储量呈负相关(图5)。这一发现表明,在大陆尺度上,碳封存的N效率(封存一个单位C所需的N量)取决于MAOM和POM之间的分配,以及它们的C/N比。在欧洲草原和森林土壤中进行的另一项研究中,POM被认为是有机碳和氮的一个强有力的预测因子,表明这种主要来源于植物且相对脆弱的碳储存部分在这些生态系统中发挥着重要作用。除土地覆盖外,土壤因子(如土壤质地和pH值)通过影响fMAOMC/NMAOM来控制碳储量(图5)。值得注意的是,C/NMAOMpH、C/NMAOM与游粉尘呈负相关,这可能表明粗质酸性土壤中细菌来源的有机质对MAOM的贡献较低。



文献解读|土壤碳储量由颗粒和矿物结合有机质决定

图4 MAOM和POM中的土壤有机碳


文献解读|土壤碳储量由颗粒和矿物结合有机质决定


图5控制有机碳储量的结构方程模型


04

结论

实施土壤碳封存战略需要明确的、基于科学的指导方针,考虑特定地点的土壤和生态系统特性,包括SOM在MAOM和POM中的相对分布。在本研究中,发现草地中的碳封存是高度持续的,但由于MAOM-C在这些系统中的主导地位,因此需要大量的N饱和。因此,管理对于草地的碳收益应针对低于其饱和水平的土壤,这表明需要对土壤碳饱和赤字进行地理估计。然而,森林在积累土壤碳的方式上具有更大的可塑性,因为它们可以在持久性较弱和更脆弱的POM部分中储存更多的碳。土壤碳封存的造林应根据土壤性质(如粉砂和粘土含量、pH值)、碳亏缺和氮有效性进行设计,并应使用AM或ECM相关树种以最大限度地提高碳收益。

论文id:https://doi.org/10.1038/s41561-019-0484-6

# 栢晖 #

 特色检测指标:

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素、CUE

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情


服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼14层


文献解读|土壤碳储量由颗粒和矿物结合有机质决定




  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务