028-8525-3068
新闻动态 News
News 行业新闻

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

日期: 2023-02-08
标签:


文献解读

原名:Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests

译名:在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

期刊:New Phytologis

IF:10.768

发表时间:2019.4

第一作者:Adrienne B. Keller



摘要

虽然对凋落物分解的主要影响机制已经很好地建立起来,但缺乏一个框架来预测生态系统内部和跨生态系统凋落物腐烂的种间差异。鉴于先前的研究将树木菌根与碳和营养动态联系起来,研究假设森林中的两种主要菌根群丛枝菌根(AM)和外生菌根(ECM)真菌在凋落物分解率上有所不同。实验收集了温带和热带/亚热带地区AM和ECM相关被子植物和裸子植物(> 200种)的凋落物化学和腐烂数据,并研究了凋落物腐烂速率、菌根关联、系统发育和气候之间的关系。在温带森林中,AM凋落物比ECM凋落物腐烂更快,凋落物含氮量和系统发育最能解释凋落物腐烂的变化在亚热带森林中,不同菌根组凋落物腐烂率无显著差异,凋落物腐烂率的变化主要由凋落物中的磷引起。研究结果表明,对树木菌根关联的认识可以提高物种对生态系统过程影响的预测,特别是在AM和ECM物种通常同时出现的温带森林,为森林凋落物质量、有机质动态和养分获取之间的联系提供了一个预测框架。


研究背景

植物凋落物分解是连接植物和微生物群落的基本过程,能有效耦合所有陆地生态系统中的碳(C)和养分循环。凋落物分解速率决定了腐烂植物组织中损失的营养物质多快能被生物吸收,从而决定了生态系统C循环和营养物质的储存和损失。同样,凋落物分解是确定养分有效性对植物竞争和群落结构的影响程度的重要过程。尽管几十年的研究已经阐明了影响凋落叶分解率的三个主要控制因素——气候、基质质量和土壤性质,但仍缺乏一个框架来整合这些因素来预测生态系统内部及之间的凋落叶腐烂率。这也阻碍预测物种的增减如何影响生态系统功能、生态系统服务和C循环对气候变化的反馈。

植物功能性状在本质上是相关联的,反映了由植物生理和环境控制形成的生态进化权衡。因此,在考虑复杂的动态过程(如凋落物分解)时,功能性状方法可能特别有用。一种正在引起人们兴趣的植物功能特征是菌根关联。超过90%的植物与单一类型的菌根真菌有关,每个菌根组的植物物种的优势已经被假设来反映和决定生态系统的养分循环,这是由于不同群体间植物性状和土壤性质的差异。对于森林树木,两种主要的真菌类型是丛枝菌根(AM)和外生菌根(ECM)真菌。据研究,AM和ECM相关树种在养分利用性状上存在差异,这反过来又与AM和ECM主导的生态系统中土壤C:氮(N)比、微生物丰度和活性以及N转化率的变化有关。尽管这种模式在温带和热带森林中普遍存在,但对导致这些动态的因素了解有限。

一种假说是AM和ECM树种的凋落物腐烂率的差异导致了两种菌根类型之间养分循环的差异。凋落叶腐烂的差异能够影响初级生产、养分保留和土壤有机质储存等生态系统过程。多项研究报告表明AM凋落物比ECM凋落物腐烂得更快,这与菌根群如何影响土壤C和N动态的理论是一致的。相对于ECM凋落物,许多AM树种的凋落叶木质素:N(凋落物腐烂率的表征)较低,而且腐烂率更快,特别是在它们的原本土壤中腐烂时。实验室培养研究也表明了AM凋落物相对于ECM凋落物的根和叶凋落物的腐烂速度更快。此外,当AM和ECM凋落物在同一土壤中腐烂,从而将凋落物化学效应与土壤基质性质隔离开来时,AM凋落物的腐烂速度始终快于ECM凋落物。因此,有令人信服的证据表明,在选定的森林中,不同菌根群的凋落物腐烂率可能不同。这种模式在生物群落内和整个生物群落中有多普遍还有待验证。

迄今为止,大多数关于AM和ECM树凋落物差异的研究都集中在相对狭窄的物种集合上,因此,在系统发育中菌根群效应的普遍性仍然缺乏验证。分解实验包括在同一土壤中混合AM和ECM凋落叶,可以通过纳入每个菌根类的更多物种多样性来应对这一挑战,但不能解释植物物种和相关微生物如何随着时间的推移影响土壤基质,并加强土壤性质的现有差异。鉴于生物群落中土壤性质、气候因素和物种分布的显著差异,菌根群效应可能随着纬度的不同而不同,因此有必要对菌根群对凋落物腐烂模式的影响进行跨生物群落分析。

为了解决这个问题,研究收集了温带和亚热带森林中大于200个AM和ECM树种的凋落物化学和分解率。研究假设AM凋落叶比ECM凋落叶分解更快。此外,研究假设不同菌根类型在凋落物分解方面的差异在中纬度地区比在高纬度或低纬度地区更大,在高纬度地区,气候对凋落物腐烂率的控制被认为更强。

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

1数据集所包含的落叶腐烂率(k)的全球分布。


主要结果

1.菌根类群对凋落物腐烂率的影响

与预测一致,在温带森林中,AM凋落叶比ECM凋落叶分解得更快(P<0.001;图2a)。相比之下,在亚热带森林中,不同菌根组的凋落物腐烂率没有显著差异(图2b)。在温带和亚热带森林中,系统发育广义最小二乘分析表明,am凋落物和ecm凋落物凋落物腐烂率的大部分变化是由物种的系统发育相关性驱动的(系统发育方差分析,p>0.05)。

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

2 (a)温带生物群落(23.5 ~ 55°纬度绝对值)丛枝菌根(AM)和外生菌根(ECM)相关树木凋落叶腐烂率(k);(b)亚热带生物群落(0-23.5°纬度绝对值)


2.气候和菌根类群对凋落物腐烂率的影响

年平均气温和MAP均与凋落物k呈正相关(图3),而PET不影响凋落物k(数据未显示)。MAT和菌根组共同解释了全球凋落物k总变异的22%(调整后r2= 0.22, P<0.001)(图3a),与AM凋落物相比,ECM凋落物的凋落物k对MAT增加的反应略强(即陡坡)(MAT和菌根组相互作用,P<0.001)。与MAT相比,MAP对数据集凋落物k总变异的解释略低(调整后r2= 0.17, P=0.02)(图3b)。这是MAP与菌根组之间强相互作用的结果(MAP与菌根组相互作用,P< 0.001),ECM凋落物腐烂率对MAP有强烈的正向反应,而AM凋落物k对MAP不太敏感。在非常潮湿的地区,AM凋落物对MAP的弱响应部分是由凋落物k的变化引起的,在这些地区,数据集中明显没有观察到ECM凋落物的腐烂;然而,在排除MAP超过3000mm yr-1的站点的凋落物k观测后MAP和菌根组间相互作用仍显著(P<0.001)。

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

3与丛枝菌根(AM)和外生菌根(ECM)相关的凋落物腐烂率(k)记录(对数转换)的全球关系:(a)年平均温度(MAT);(b)年平均降水量。


3.凋落物化学组成和菌根类群对凋落物k的影响

对于该研究数据集的子集,包括给定凋落物的凋落物化学组成和凋落物k数据,研究了凋落物化学组成如何很好地预测菌根类群之间观察到的凋落物k差异。在温带森林凋落物化学组成变化中,凋落物N(%)是凋落物k的最佳预测因子。AM凋落物腐烂率与凋落物的N呈极显著正相关(r2= 0.38, P<0.001),ECM凋落物的N与凋落物的k相关性较弱(r2= 0.05, P<0.001)(图4a)。在温带森林中,AM和ECM凋落物的凋落物N无显著差异,而在亚/热带森林中,AM凋落物的凋落物N平均低于ECM凋落物(P =0.03)。同时,在亚热带森林中,凋落物P是AM和ECM凋落物k的最佳凋落物化学预测因子(r2=0.19, P<0.001)(图4b)。ECM凋落物P在温带森林(P=0.08)和亚热带森林(P=0.07)均略高。最后,在比较菌根组内生物群落差异时,发现亚/热带森林AM和ECM凋落物N值均高于温带森林(AM,P=0.076;ECM,P=0.002)。AM树种和ECM树种与凋落物P无明显差异。

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同

4温带森林丛枝菌根(AM)和外生菌根(ECM)树种的初始凋落物氮百分比(% N)与凋落物腐烂率(k)的关系(a);亚热带森林AMECM树种的初始凋落物磷百分比(% P)与凋落物k的关系(b)


结论

在这里,研究表明,在温带森林中,不同菌根组的凋落物k不同,在低纬度地区的影响较弱

综上所述,认为凋落物质量和局部分解物基质的特性协同作用,导致凋落物k中生物群系特异性菌根群差异。在温带森林中,低质量的凋落物分解和释放养分缓慢,导致土壤养分有效性低,C:养分比高。这反过来又形成了一个代谢率低的分解者群落,能够获得低质量的基质。如果低土壤养分有效性提高了叶片吸收效率,进一步降低了凋落物养分浓度,并加强了低养分环境中植物凋落物缓慢的分解,则这种植物-土壤-微生物正反馈循环可能会进一步放大。植物凋落物特征、土壤肥力和分解者群落之间的这种共变异突出了将菌根关联视为一种综合特征的效用,它具有预测物种对生态系统过程(如凋落物分解)的特定影响的能力。这些菌根群综合征在低纬度森林中减弱甚至逆转的程度值得进一步研究。随着环境变化迫使森林植物群落组成发生大规模变化,需要采用这样的功能方法来提高物种对生态系统功能的影响,从树木到林分和生态系统规模,以及更好地预测植物群落和气候周期之间的反馈。

论文id:https://doi.org/10.1111/nph.15524

END

栢晖生物 

 特色检测指标:

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情


服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼14层

文献解读|在温带而非热带森林中,不同菌根群的凋落叶腐烂率不同




  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务