028-8525-3068
新闻动态 News
News 行业新闻

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

日期: 2022-09-30
标签:
原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

点击蓝字关注我们


文献解读

原名:In situ 13CO2 labeling reveals that alpine treeline trees allocate less photoassimilates to roots compared with low-elevation trees


译名:原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少


期刊:Tree Physiology


IF:4.561发表时间:2022.4


第一作者:Yu Cong

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少
摘要

背景:碳(C)分配对高山树线树木的生存和生长起着至关重要的作用,但目前对其了解甚少。

方法:利用原位13CO2标记技术,我们研究了位于树线和低海拔的树木叶片光合作用和13C标记的光同化物在不同组织(叶片、小枝和细根)中的分配。还测定了各组织非结构性碳水化合物(NSC)浓度。

结果:与低海拔树木(LETs,1700 m a.s.l.)相比,树线树木(TLTs,2000 ma.s.l.)的光合作用没有受到明显的抑制,但TLTs向地下分配新同化碳(C)的比例更低。新碳在TLTs叶片中的停留时间(19天)长于LETs10天)我们还发现TLTs组织中新碳的总体密度更低。

结论:TLTs可能具有光合补偿机制,以抵消恶劣的树线环境(如,较低的温度和较短的生长季节)对碳获取的负面影响。

树线较低的温度可能会限制碳库活性和韧皮部的向下运输,而较短的树线生长季节也可能会导致根系生长提前停止,因此碳库强度降低,这可能最终导致碳库组织中新碳密度降低,最终限制高山树线树木的生长。

研究背景

高山树线是陆地生态体统最明显的植被边界,对全球和区域环境变化高度敏感。树线附近的低温、较低的CO2分压、强风和强烈紫外线辐射可能会抑制树木生理过程,从而限制高山树线交错带的光合作用、生长和生存。

光合产物的分配以及向各组织的投资是树木碳平衡的重要方面。NSC的组织水平是促进生长、维持代谢和碳储存能力的核心,反映了树木碳同化、分配和消耗之间的平衡。以往许多研究发现极端环境条件下组织NSC浓度增加。

然而,对于极端环境下组织NSC升高是由于库需求低于光合供应,或者是由于在恶劣环境条件下选择主动积累用于维持树木功能,目前尚不清楚。

树木全株尺度的碳分配受到各种环境因素的影响,如干旱、遮阴、养分限制以及物种竞争。树木碳分配在适度胁迫环境下遵循“功能平衡假说”,即植物为加强对最具限制性资源的获取,通常倾向于将碳分配给限制的器官。然而,在极端胁迫环境下,树木碳分配格局也可能不遵循“功能平衡假说”。

长时间的碳分配格局主要通过生物量分配来评估,而短时间尺度上则主要通过13C标记来实现。虽然13C标记技术早已被应用于植物碳分配研究中。但只有很少的研究使用该技术定量分析高寒树线树木中新同化碳的分配格局。因此,为了更好地理解树线形成的机制,需要使用最新的方法和技术,精确、定量地评估树木的碳合成和分配格局。

在本研究中,我们对生长在高山树线和低海拔的白桦进行了全树13CO2脉冲标记,跟踪13C示踪物在植物内部、土壤和大气中的转移。此外,我们还测定了叶片、小枝和根中的NSC浓度。

我们假设:(1)树线树木(TLTs)的光合作用能力与低海拔树木(LETs)相当;(2)由于TLTs在夏季对NSC的主动储存,TLTs在夏季会将更多的新同化碳分配到根系中,因此TLTs根中NSC浓度会高于LETs

主要结果

1.树木大小、生物量和光合能力

树线树木(TLTs)的基径、树高、总生物量以及年平均树轮宽度均显著低于低海拔树木(LETs;表1)。然而TLTs的最大光合速率(Amax)和气孔导度(gs)显著高于LETs(表2)。TLTs的根冠比显著高于LETs,但单位面积叶片重(LMA)和每树总叶面积没有显著从差异。

1白桦树在不同海拔的大小、年龄和生物量

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

2不同海拔树木组织中最大光合速率(Amax)和气孔导度gs)以及NSC浓度

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

2.13C富集量(%

在大部分采样日期,TLTs叶片中的13C富集度显著高于LETs(P<0.05;图4a),但叶片13C富集度下降速率低于LETs。在小枝中,TLTs的13C富集度峰值比LETs出现得更晚(图4b)。在任何取样时间,细根中13C富集度在TLTs和LETs之间没有显著差异(图4c),但TLTs的13C富集度峰值比LETs出现得更晚。土壤中13C富集度较低,且两个海拔之间没有显著差异(图4d)。

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

413C富集度(%)在不同海拔的白桦树各组织中的时间变化动态:(a)叶片;(b)小枝;(c)细根;(d)土壤。*表示不同海拔在0.05水平上具有显著差异。

3.可溶性13C富集度(%,表征NSC13C浓度)和NSC浓度

叶片可溶性13C富集度在TLTs和LETs之间没有显著差异(图5a)。小枝中,TLTs的可溶性13C富集度总体上高于LETs,但只在第15天达到显著水平(图5b)。与之相反,在细根中,TLTs可溶性13C富集度在任何取样时间均低于LETs(图5c)。

叶片和小枝中的NSC浓度不随海拔高度而变化,但TLTs的根系NSC浓度显著高于LETs(表2)。但总体上,TLTs的可溶性13C含量低于LETs(图6)。

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

5可溶性13C富集度(%)在不同海拔的白桦树各组织中的时间变化动态:(a)叶片;(b)小枝;(c)细根。*表示不同海拔在0.05水平上具有显著差异。

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

6可溶性13C含量(mg13C)在不同海拔的白桦树各组织中的时间变化动态:(a)叶片;(b)小枝;(c)细根;(d)全株的。*表示不同海拔在0.05水平上具有显著差异。

4.单位投影面积的13C密度(mg 13C m-2

考虑到树木生物量的差异,我们根据单位生物量或单位投影地面面积对图6中显示的可溶性13C含量进行了标准化。同样地,总的趋势是标记后TLTs组织中的可溶性13C密度(即单位投影表面积)低于LETs(图7)。

对于呼吸而言,在低海拔(1700m),基于叶面积和树木投影面积的叶片呼吸消耗13C量倾向于高于树线(2000m; 图8a,c),但只在标记后第二天具有显著差异。土壤呼吸消耗的13C量也表现出一致的趋势(图8b,d)。

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

7单位投影面积13C密度(mg13Cm-2)在不同海拔的白桦树各组织中的时间变化动态:(a)叶片;(b)小枝;(c)细根;(d)全株。*表示不同海拔在0.05水平上具有显著差异。

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

8基于叶面积(a)或投影地面面积(c)的叶片呼吸导致的13C损失(平均值±SEn=4/海拔),基于小区面积(c)或投影地面面积(d)的土壤呼吸导致的13C损失。

结论

1.与假设1一致,树线树木(TLTs)的光合作用相比低海拔树木(LETs)并没有表现出明显的劣势,表明树木生长在低温恶劣环境中的具有光合作用补偿机制。

2.与假设2相反,尽管本研究的海拔仅相差300 m(1700和2000 m),位于树线的树木(TLTs)向地下分配的新碳显著低于低海拔的树木(LETs)。这可能是TLTsLETs之间不同的生长条件(主要是温度和土壤水分条件)导致的库活性、韧皮部C运输速度和根系物候期差异的综合结果。

3.本研究表明,TLTs组织中的可溶性13C密度总体上低于LETs。这为树线形成的碳生理机制提供了新的见解,并为最近的研究结果提供了碳生理学证据,即低组织碳密度导致的低生长速率以及与温度相关的较短生长季节长度共同决定了高海拔树木的生长。

论文id:https://doi.org/10.1093/treephys/tpac048

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

栢晖 #

 特色检测指标:

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情

服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼4楼

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务