028-8525-3068
新闻动态 News
News 行业新闻

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

日期: 2022-09-30
标签:
原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

点击蓝字关注我们


文献解读

原名:In situ 13CO2 labeling reveals that alpine treeline trees allocate less photoassimilates to roots compared with low-elevation trees


译名:原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少


期刊:Tree Physiology


IF:4.561发表时间:2022.4


第一作者:Yu Cong

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少
摘要

背景:碳(C)分配对高山树线树木的生存和生长起着至关重要的作用,但目前对其了解甚少。

方法:利用原位13CO2标记技术,我们研究了位于树线和低海拔的树木叶片光合作用和13C标记的光同化物在不同组织(叶片、小枝和细根)中的分配。还测定了各组织非结构性碳水化合物(NSC)浓度。

结果:与低海拔树木(LETs,1700 m a.s.l.)相比,树线树木(TLTs,2000 ma.s.l.)的光合作用没有受到明显的抑制,但TLTs向地下分配新同化碳(C)的比例更低。新碳在TLTs叶片中的停留时间(19天)长于LETs10天)我们还发现TLTs组织中新碳的总体密度更低。

结论:TLTs可能具有光合补偿机制,以抵消恶劣的树线环境(如,较低的温度和较短的生长季节)对碳获取的负面影响。

树线较低的温度可能会限制碳库活性和韧皮部的向下运输,而较短的树线生长季节也可能会导致根系生长提前停止,因此碳库强度降低,这可能最终导致碳库组织中新碳密度降低,最终限制高山树线树木的生长。

研究背景

高山树线是陆地生态体统最明显的植被边界,对全球和区域环境变化高度敏感。树线附近的低温、较低的CO2分压、强风和强烈紫外线辐射可能会抑制树木生理过程,从而限制高山树线交错带的光合作用、生长和生存。

光合产物的分配以及向各组织的投资是树木碳平衡的重要方面。NSC的组织水平是促进生长、维持代谢和碳储存能力的核心,反映了树木碳同化、分配和消耗之间的平衡。以往许多研究发现极端环境条件下组织NSC浓度增加。

然而,对于极端环境下组织NSC升高是由于库需求低于光合供应,或者是由于在恶劣环境条件下选择主动积累用于维持树木功能,目前尚不清楚。

树木全株尺度的碳分配受到各种环境因素的影响,如干旱、遮阴、养分限制以及物种竞争。树木碳分配在适度胁迫环境下遵循“功能平衡假说”,即植物为加强对最具限制性资源的获取,通常倾向于将碳分配给限制的器官。然而,在极端胁迫环境下,树木碳分配格局也可能不遵循“功能平衡假说”。

长时间的碳分配格局主要通过生物量分配来评估,而短时间尺度上则主要通过13C标记来实现。虽然13C标记技术早已被应用于植物碳分配研究中。但只有很少的研究使用该技术定量分析高寒树线树木中新同化碳的分配格局。因此,为了更好地理解树线形成的机制,需要使用最新的方法和技术,精确、定量地评估树木的碳合成和分配格局。

在本研究中,我们对生长在高山树线和低海拔的白桦进行了全树13CO2脉冲标记,跟踪13C示踪物在植物内部、土壤和大气中的转移。此外,我们还测定了叶片、小枝和根中的NSC浓度。

我们假设:(1)树线树木(TLTs)的光合作用能力与低海拔树木(LETs)相当;(2)由于TLTs在夏季对NSC的主动储存,TLTs在夏季会将更多的新同化碳分配到根系中,因此TLTs根中NSC浓度会高于LETs

主要结果

1.树木大小、生物量和光合能力

树线树木(TLTs)的基径、树高、总生物量以及年平均树轮宽度均显著低于低海拔树木(LETs;表1)。然而TLTs的最大光合速率(Amax)和气孔导度(gs)显著高于LETs(表2)。TLTs的根冠比显著高于LETs,但单位面积叶片重(LMA)和每树总叶面积没有显著从差异。

1白桦树在不同海拔的大小、年龄和生物量

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

2不同海拔树木组织中最大光合速率(Amax)和气孔导度gs)以及NSC浓度

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

2.13C富集量(%

在大部分采样日期,TLTs叶片中的13C富集度显著高于LETs(P<0.05;图4a),但叶片13C富集度下降速率低于LETs。在小枝中,TLTs的13C富集度峰值比LETs出现得更晚(图4b)。在任何取样时间,细根中13C富集度在TLTs和LETs之间没有显著差异(图4c),但TLTs的13C富集度峰值比LETs出现得更晚。土壤中13C富集度较低,且两个海拔之间没有显著差异(图4d)。

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

413C富集度(%)在不同海拔的白桦树各组织中的时间变化动态:(a)叶片;(b)小枝;(c)细根;(d)土壤。*表示不同海拔在0.05水平上具有显著差异。

3.可溶性13C富集度(%,表征NSC13C浓度)和NSC浓度

叶片可溶性13C富集度在TLTs和LETs之间没有显著差异(图5a)。小枝中,TLTs的可溶性13C富集度总体上高于LETs,但只在第15天达到显著水平(图5b)。与之相反,在细根中,TLTs可溶性13C富集度在任何取样时间均低于LETs(图5c)。

叶片和小枝中的NSC浓度不随海拔高度而变化,但TLTs的根系NSC浓度显著高于LETs(表2)。但总体上,TLTs的可溶性13C含量低于LETs(图6)。

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

5可溶性13C富集度(%)在不同海拔的白桦树各组织中的时间变化动态:(a)叶片;(b)小枝;(c)细根。*表示不同海拔在0.05水平上具有显著差异。

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

6可溶性13C含量(mg13C)在不同海拔的白桦树各组织中的时间变化动态:(a)叶片;(b)小枝;(c)细根;(d)全株的。*表示不同海拔在0.05水平上具有显著差异。

4.单位投影面积的13C密度(mg 13C m-2

考虑到树木生物量的差异,我们根据单位生物量或单位投影地面面积对图6中显示的可溶性13C含量进行了标准化。同样地,总的趋势是标记后TLTs组织中的可溶性13C密度(即单位投影表面积)低于LETs(图7)。

对于呼吸而言,在低海拔(1700m),基于叶面积和树木投影面积的叶片呼吸消耗13C量倾向于高于树线(2000m; 图8a,c),但只在标记后第二天具有显著差异。土壤呼吸消耗的13C量也表现出一致的趋势(图8b,d)。

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

7单位投影面积13C密度(mg13Cm-2)在不同海拔的白桦树各组织中的时间变化动态:(a)叶片;(b)小枝;(c)细根;(d)全株。*表示不同海拔在0.05水平上具有显著差异。

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

8基于叶面积(a)或投影地面面积(c)的叶片呼吸导致的13C损失(平均值±SEn=4/海拔),基于小区面积(c)或投影地面面积(d)的土壤呼吸导致的13C损失。

结论

1.与假设1一致,树线树木(TLTs)的光合作用相比低海拔树木(LETs)并没有表现出明显的劣势,表明树木生长在低温恶劣环境中的具有光合作用补偿机制。

2.与假设2相反,尽管本研究的海拔仅相差300 m(1700和2000 m),位于树线的树木(TLTs)向地下分配的新碳显著低于低海拔的树木(LETs)。这可能是TLTsLETs之间不同的生长条件(主要是温度和土壤水分条件)导致的库活性、韧皮部C运输速度和根系物候期差异的综合结果。

3.本研究表明,TLTs组织中的可溶性13C密度总体上低于LETs。这为树线形成的碳生理机制提供了新的见解,并为最近的研究结果提供了碳生理学证据,即低组织碳密度导致的低生长速率以及与温度相关的较短生长季节长度共同决定了高海拔树木的生长。

论文id:https://doi.org/10.1093/treephys/tpac048

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少

栢晖 #

 特色检测指标:

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情

服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼4楼

原位13CO2标记表明,与低海拔树木相比,树线树木分配给根系的光合同化物更少


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
  • 点击次数: 0
    2024 - 09 - 10
    本标准规定了去除杂质、风干、烘干、磨碎等制备森林植物及森林枯枝落叶层样品的方法。本标准适用于森林植物及森林枯枝落叶层样品的制备。样品制备流程 1、去除杂质  植物样品,如果是叶子,要用清洁的湿纱布揩擦干净,如果是树皮或根,则将其表面的干土用刷子把它刷净;微量元素分析用的样品须用1~3g/L去垢剂溶液洗涤,再用水淋净。森林枯枝落叶层样品要挑尽混在其间的石砾、土块等非有机物质。 2、风干和烘干  把揩擦干净的植物新鲜样品及森林枯枝落叶层样品放在通风的地方,铺成薄层,并经常翻动使尽快风干,切不可使其霉变,风干后装入布口袋中。在有烘箱的条件下,可把擦干净的植物新鲜样品及森林枯枝落叶层样品松松地放入烘箱中,一般分两步干燥:先将植物新鲜样品在80~90℃鼓风烘箱中烘15~ 30 min(松软组织烘15 min,致密坚实的组织烘30 min),然后降温至65℃,森林枯枝落叶层样品可直接 在65℃烘干。干燥时间须视新鲜样品含水量而定,通常为12~14 h。然后装入布口袋中。 3、磨碎  样品磨碎前需在65℃烘箱中烘到发脆,然后再进行磨碎处理。如果只测定氮、磷、钾、钠、钙、镁,则可用植物粉碎机磨碎,并通过2mm筛孔,然后装于磨口广口瓶中备用。若分析项目除以上内容外,还要测定微量元素,则样品可用不锈钢剪刀剪细或放在研钵中研碎,并通过2 mm尼龙筛孔,然后装入磨口广口瓶中备用。木材试样可用刨子刨成刨花或用刀劈成小块后再用不锈钢剪刀剪细,装于磨口广口瓶中备用。注:1、已发霉的样品不能用来作森林植物的化学分析,因发霉可促进样品内部酶的催化作用,造成有机物质的严重损失。2、制备样品时应防止烟雾和灰尘污染。更多检测相关内容so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 08 - 30
    原名:Characteristics of dissolved black carbon in riverine surface microlayer译名:河流表层中溶解性黑碳的特征期刊:Marine Pollution BulletinIF:5.3发表日期:2023.07第一作者:Vaezzadeh, Vahab 中国科学院广州地球化学研究所有机地球化学国家重点实验室 粤港澳环境污染与控制联合实验室一、背景黑碳(BC)是由生物质和化石燃料不完全燃烧产生的。根据BC的结构和土壤组成,土壤中的BC最终会生物降解并在孔隙水中溶解,从而通过地表径流输送到水生环境中。BC的溶解形式(DBC)通过河流进入海洋,由于其难降解的特性,对地球上的碳循环具有重要意义。先前使用(BPCAs)苯多羧酸方法的研究已经证明了河流和海洋中不同的DBC特征。虽然DBC的河流输出被认为是海洋DBC库的主要贡献者,其速率为27 Tg -1C-1y ,但关于河流DBC的含量和特征(结构和同位素特征)的数据缺乏。表层微层(SML)厚度为1 ~ 1000 μm,是大气和水生环境之间的分界线,与下层相比,具有不同的生物地球化学特性。SML在(可溶性有机碳)DOC及其难熔部分的扩散气水交换中起着重要作用,既是DBC的来源,也是DBC的汇。目前,有机污染物在SML中的富集已经得到了广泛的研究,而空气-水界面的DBC研究一直被忽视。因此,通过对珠江(PR)上、中和下游的SML中DBC含量组成及其同位素的研究弥补河流DBC特征和河口DBC的运输机制的数据的缺失以及有助于更好的理解DBC沿陆-海洋连续体的运输和命运。二、科学问题(1)分析从PR中采集的SML样本中DBC的含量、组成和δ13C特征。(2)将SML中DBC的特征和来源与全球不同水生生态系统的现有文献进行比较。三、材料与方法(1)SML水样采集于2020年10月东...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务