028-8525-3068
新闻动态 News
News 行业新闻

文献解读|草地土壤固碳:当前的认识、挑战和解决方案

日期: 2022-09-16
标签:
文献解读

原名:Grasslandsoil carbon sequestration: Current understanding, challenges andsolutions

译名:草地土壤固碳:当前的认识、挑战和解决方案

作者:YongfeiBai and M. Francesca Cotrufo

期刊:Science

影响因子/分区:43.546/1区

发表时间:2022.08.04




01
关键词

草地土壤固碳、土壤有机碳、微生物残体碳、有机碳储量、碳封存

02
 研究背景

背景:草地生态系统的面积为5250万平方公里,占除格陵兰岛和南极洲外地球陆地表面的40.5%。草地具有良好的生态功能,生产功能和文化功能。草地还存储了约34%的陆地碳储量,其中约90%的碳存储在地下,作为根系生物量和土壤有机碳(SOC),因此在土壤固碳方面发挥着重要作用。草原非常容易受到人类干扰(如过度放牧和土地利用转向农业)和气候变化的影响。在全球范围内,草地的生物多样性和生态系统功能严重下降,导致有机碳储量减少。

主题:基于微生物在土壤有机碳形成和持久性中起关键作用这一新范式,提出了植物多样性通过影响地上和地下生物量分配、凋落物和根系分泌物碳输入,调控土壤微生物体内转化、体外修饰和微生物残体续埋过程,进而调控矿物结合态有机质和颗粒态有机质的形成、积累和持久性的概念框架。

03
科学问题

本文研究了三个问题:

(i)关键的生物和非生物因子如何调控草地有机碳的形成、周转和稳定性?

(ii)气候变暖、降水变化和火灾如何影响有机碳储量?

(iii)放牧管理如何影响有机碳,以及改进的实践如何导致有机碳封存?

04
研究内容

(1)有机碳封存的机制与驱动因素

土壤有机碳分布在POM和MAOM组分之间,只有一小部分(1-2%)以溶解有机物的形式存在。POM由植物和微生物残基破碎形成,因此由大聚合物组成的轻质碎片组成(图1)。MAOM由从植物残基中浸出或从植物根部渗出的单个小分子形成,与POM相比,具有较低的碳氮比。MAOM有助于土壤长期固碳。根系分泌物如溶解糖、氨基酸和有机酸是MAOM形成的关键途径,主要通过微生物在体内转化(图1)。

约46%的根系分泌物、9%的根系组织和7%的地上碳残留转化为MAOM,而19%的根系凋落物转化为POM,在田间和受控的实验室条件下生长的作物、草地和树木。因此,根系碳分配较大的植物对土壤固碳,特别是MAOM的形成贡献较大。

植物多样性是有机碳形成和储存的关键驱动因素。高植物多样性通过提高地下碳输入和促进微生物生长、周转和埋葬尸块来提高有机碳储存。保持高水平的生物多样性和根系碳输入对提高草地有机碳储量和持久性至关重要(图1)。

真菌和细菌对草原土壤有机碳的积累、稳定和周转有着强烈的影响(图1)。微生物坏死在有机碳积累和稳定中起着重要作用。在全球草原表层土壤中,微生物坏死块对总有机碳的贡献在23~74%之间,平均为50%(图2A),高于农业土壤和温带森林土壤(17,18)。坏死物对土壤有机碳变化的贡献随土壤深度的变化,主要以真菌坏死物为主,全球草原上真菌与细菌的坏死物碳比在1.2~ 4.1之间(图2B)。此外,菌根真菌与植物根系共生,直接从植物获得碳,可以调节土壤中的固碳能力。

气候调节微生物的代谢活动,从而控制大规模的微生物坏死和SOC存储模式。在全球范围内,寒冷潮湿的土壤促进微生物坏死物碳的积累。最大的微生物坏死团碳发生在平均年降水量900-1000毫米,平均年温度<0°C(图2C),这表明在这些系统中保存当前储量是当务之急。

微生物多样性也可能通过调节土壤中微生物同化碳的效率和有机矿物组合的产生来影响有机碳的存储。近年来,研究发现微生物多样性可以促进凋落物来源的POM的稳定效率,但会降低MAOM的稳定效率。


文献解读|草地土壤固碳:当前的认识、挑战和解决方案

图1

(2)气候变化对有机碳封存的影响

气候变化对土壤固碳的影响因草地类型、气候和土壤条件而变化。在半干旱草原,变暖可能会增加根系的碳输入,但通过抑制真菌生长和土壤呼吸抑制MAOM的分解,从而导致MAOM库的增加。在高寒草原,变暖引起的冻土退化通过降低微生物网络的稳定性和加速SOC(特别是POM)衰减来减少活动层有机碳的存储。最近的一项荟萃分析表明,长期变暖会增加木质素酶和纤维素酶活性的比值,提高微生物对顽固碳的利用,导致表层土壤顽固碳库减少14%。


文献解读|草地土壤固碳:当前的认识、挑战和解决方案

图2

未来预估的降水异常和长期干旱可能会通过改变植物群落组成、生产力和碳分配以及微生物过程来影响草地生态系统的土壤碳固存。在半干旱草原,增加降水通过刺激真菌生长和增加土壤交换性镁来促进土壤聚集。降水异常(增加和减少)可以显著改变草地的根冠比和垂直根系分布(31),从而调节土壤微生物生长和有机碳储量。然而,在全球尺度上,由于数据可得性有限,草地POM仅随降水增加呈负趋势,而MAOM和总有机碳浓度则呈正趋势。

气候变化引起的火灾频率的增加,通过强化养分限制,抑制植物生长和碳输入,极大地改变草地的长期碳储量。在全球热带稀树草原的上层土壤(0-20厘米),火灾频率升高平均每年每公顷减少0.21毫克碳储量。然而,最近的一项研究表明,火灾抑制(即>60年的不火灾)对热带稀树草原的总有机碳储量(0~ 60 cm)影响不大,尤其是在更深的土层中,土壤碳受火灾频率变化的影响较小。

(3)放牧压力对草地土壤碳的影响

五大洲,牲畜放牧平均减少了15%的有机碳存量,其中热带减少最多(-22.4%),温带草原减少最少(-4.5%)。在全球范围内,轻度放牧(如季节性和轮 牧)对土壤碳储量的负面影响最小,甚至可以促进土壤碳储量,而中度和重度(连续)放牧则会持续降低土壤碳储量(图3A)。


文献解读|草地土壤固碳:当前的认识、挑战和解决方案

文献解读|草地土壤固碳:当前的认识、挑战和解决方案3

      

放牧对土壤固碳的影响程度和方向取决于环境,并因气候和土壤条件、植被特性、牲畜类型、草食动物多样性、放牧策略以及放牧强度和持续时间而变化。放牧强度的增加对土壤有机碳的负面影响随着水分的增加而减小,但在温带草地上,随着温度的升高和放牧时间的延长,负面影响会更严重。绵羊放牧一般比牛放牧对有机碳的负面影响更大,且放牧对表层土壤有机碳的减少显著大于底土。此外,与连续放牧(或自由放牧)相比,轮牧始终显示出更高的有机碳储量,特别是在矿物相关部分。

(4)草原土壤碳贮量的管理

管理的改进可能会通过几个相互关联的机制导致土壤碳积累。从农田到草地的转变消除了耕作的干扰,增加了根系对土壤的碳输入。恢复退化草地的生物多样性可以增加植物产量,促进微生物周转和尸块埋葬。放牧改良可以增加高质量的根系碳(低碳氮比)输入量和氮滞留量,从而促进土壤中MAOM的形成和持久性。播种豆科植物通过提高根系生物量、根系分泌物和细根周转增加土壤碳氮输入。无机肥料和有机肥料的施用可以促进初级生产力和优质植物向土壤的碳输入,从而导致更有效的微生物碳利用。

为了恢复草地,研究人员采取了多种管理干预措施(图3,B和C)。在所有改进的管理措施中,由耕作转为草地、增加植物多样性、播种豆类和牧草以及施肥与土壤固碳率最高相关(图3C)。然而,管理对土壤碳储量影响的方向和程度与环境有关,取决于气候、植物群落组成和土壤性质等因素。因此,放牧实践需要在理解环境的基础上实施。此外,还需要进一步研究管理干预下草地生物多样性、初级生产力和土壤固碳之间的协同和权衡。

土壤有机碳固碳潜力的全球格局主要是由不同区域平均固碳速率和退化草地面积的差异造成的。欧洲草地的平均土壤碳封存率更高(图4A)。此外,优化放牧强度(例如轮牧)预计将使全球放牧地的土壤固碳潜力增加148至6.99亿吨(MtCO2e year -1)(图4B),其中最大的固碳潜力发生在中南美洲、非洲和亚洲(51)。此外,播种豆科植物预计可使全球牧场的有机碳储量增加147mtCO2年-1(51),其中欧洲最大的牧场和最高的平均土壤固碳率都显示出最大的土壤固碳潜力(图4C)。

文献解读|草地土壤固碳:当前的认识、挑战和解决方案

图4

05
总结

最近的研究在确定不同草原固碳和保存土壤碳的能力和关键机制、制定恢复生物多样性、保存现有有机碳储量、促进额外固碳以缓解气候变化和草地可持续管理等方面取得了显著进展。这些进展凸显了植物和土壤生物多样性在调节微生物坏死体碳、MAOM和POM的形成、调节气候变化影响以及通过管理改善和恢复促进全球草原有机碳储存方面的重要作用。

研究还表明,气候变化、放牧、火灾、草地恢复和缓解措施对土壤碳封存的影响受到多种环境相关因素的调节。未来需要进一步厘清各种草地管理措施的碳固存潜力及其不确定性和环境依赖性,揭示这些措施在生物多样性保护、气候变化减缓和食物生产方面产生的协同效应和权衡。


通过阅读本文知晓我们应采取以下行动:

1)恢复各类退化草地;

2)改进放牧地管理;

3)合理配置草地的生态-生产功能;

4)保护草地生物多样性;

5)牧场和人工草地中种植豆科植物;

6)改善草地施肥管理;

7)避免草地转化为农田、林地和其它用地。


文献解读|草地土壤固碳:当前的认识、挑战和解决方案

栢晖 #

 特色检测指标:

氨基糖木质素PLFA

磷组分有机酸有机氮组分

微生物量碳氮磷同位素

其他土壤、植物、水体等常规检测指标均可测定,欢迎咨询相关工作人员了解详情

服务热线:028-85253068

18682730999(微信同号)

公司地址:成都市成华区四川检验检测创新科技园2号楼4层

文献解读|草地土壤固碳:当前的认识、挑战和解决方案




  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务