028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 干旱条件下,成熟温带树种根系分泌物的碳分配保持不变

日期: 2022-06-24
标签:

文献解读:

原名:Carbon allocation to root exudates is maintained in mature temperate tree species under drought

译名:干旱条件下,成熟温带树种根系分泌物的碳分配保持不变

期刊:New Phytologist

IF:10.152

发表时间:2022.5

第一作者:Melanie Brunn


摘要

已有研究证明根系分泌碳输入在干旱条件下增加,并促进一系列重要的生态系统功能。然而,干旱胁迫下树木根系分泌物输入量与树木总碳收支之间的关系,即在全株水平上,有多少净同化碳分配给了根系分泌物目前尚不清楚。我们通过收集干旱处理下的成熟山毛榉(Fagus sylvatica)和云杉(Picea abies)的根系分泌物,并结合单位表面积叶片、茎和细根的碳通量计算了初夏期间分配给根系分泌物占每日碳同化量的比例。结果表明,单位根段的根系分泌物输入量随着土壤含水量的下降而呈指数级升高,且在萎蔫点最高。尽管干旱处理下树木碳同化量下降了约50%,全株根系水平上的根系分泌物输入量较对照处理保持不变,从而导致干旱处理下根系分泌物碳输入量所占净碳同化的比例增加了2-3倍。干旱处理下,云杉有2/3的根系分泌物碳释放至表层土壤中,而山毛榉则只占1/3。综上,干旱处理下,树木全株根系水平的根系分泌物输入量较对照处理保持不变,这表明干旱条件下树木对地下的C投资可能有利于维持生态系统的恢复力。

研究背景

近年的研究结果表明根际过程调控生态系统碳动态的重要性以及对干旱响应的敏感性。在根际区,植物主要通过根系分泌物与环境相互作用。以往研究表明根系分泌物在缓解植物环境胁迫(如干旱)中发挥重要的作用。但干旱引起的根系分泌物输入量变化与全株植物碳收支之间的关系尚不清楚。

尽管有研究表明干旱条件下,植物会改变地下碳分配策略以提高根系分泌物输入速率。但大多研究仅用单个根段的分泌物输入速率代表全株的根系分泌物输入策略,并未考虑干旱条件下植物生长、分布以及寿命的改变对全株植物根系分泌物输入的影响。除此之外,由于土壤含水量在垂直剖面上也具有较大的变化,所以还需要将不同土层根系的分泌物输入量统筹考虑以揭示在干旱条件下全株植物的根系分泌物动态。

根系生长和根系分泌物对水分限制的响应可能因物种对水分限制的敏感性不同而存在差异,比如浅根系的云杉可能比深根系的山毛榉更易受到水分限制的影响。

本研究中,我们在成熟温带森林中进行了为期5年的降雨排除试验,以测试干旱条件下,树木光合产物分配给根系分泌物的比例是否增加。同时测定了不同土层根系分泌物输入量以探究全株水平根系分泌物输入的变化。提出以下假设:1.更干旱的表层土中的根系分泌物输入速率高于更湿润的底层土,根系分泌物速率与土壤含水量负相关。因此浅根系的云杉可能比深根系的山毛榉释放更多的根系分泌物。2.干旱处理下,根系分泌物占净碳同化的比例相比对照处理增加,即水分限制条件下树木对地下根系分泌物的碳投资增加。

主要结果

1. 土壤含水量变化

干旱处理下,两个树种的土壤含水量显著低于对照(表1)。干旱处理下,云杉林的SWC显著低于其他处理,两个物种的表层土(0-7 cm)SWC均显著低于7-30和30-50 cm。 

文献解读| 干旱条件下,成熟温带树种根系分泌物的碳分配保持不变

表1 云杉和山毛榉不同土层不同处理的土壤含水量(%)


2. 单个根段根系分泌物的变化

干旱处理下,两个物种的表层土(0-7 cm)中根系分泌物输入速率均显著低于7-30 cm土层(图1)。在SWC垂直分布更加均匀的对照组,两种物种的根系分泌物输入速率在土壤垂直方向上没有显著差异。然而,与对照组相比,干旱处理下0-7 cm土层的根系分泌物输入速率具有增加的趋势,7-30 cm深度具有减少的趋势(图1)。

云杉单位细根表面积分泌物输入速率随着土壤含水量的增加而降低(图2a),山毛榉具有类似的趋势但不显著(图2b)。

文献解读| 干旱条件下,成熟温带树种根系分泌物的碳分配保持不变

图1 两个物种的单位表面积根系分泌物输入速率,红色:干旱处理;蓝色:对照处理;(*), P = 0.1; **, P < 0.01

文献解读| 干旱条件下,成熟温带树种根系分泌物的碳分配保持不变

图2 单位表面积根系分泌物输入速率与土壤含水量的关系;(a)山毛榉;(b)云杉;(c)山毛榉和云杉


3. 根系水平以及全株水平的根系分泌物碳分配

图3a表明,两个物种整体根系的分泌物输入速率(根系水平)在干旱和对照处理间均无显著差异。

干旱处理下,两个物种的净碳同化量相比对照下降了约50%(图4)。对山毛榉而言,对照处理下,分配给根系分泌物的碳占净同化碳的0.5%,而干旱处理下这一比例增加至1%;对云杉而言,干旱处理下占比由对照的0.7%增加至2.5%。总的来说,干旱处理下山毛榉分配给根系分泌物的碳占净同化碳的比例相较于对照增加了2倍,而云杉则增加了3倍(图4)。

文献解读| 干旱条件下,成熟温带树种根系分泌物的碳分配保持不变

图3 不同深度根系分泌物输入速率比例

文献解读| 干旱条件下,成熟温带树种根系分泌物的碳分配保持不变

图4 全株水平上光合碳在干旱和对照处理下的分配格局;(a)山毛榉;(b)云杉

结论

与其它碳通量(根系呼吸、地上部分呼吸)相比,根系和全株水平的根系分泌物输入量较小,在森林的总体碳收支中似乎可以忽略不计。但在干旱条件下,树木增加对根系分泌物的碳投资似乎在维持树木活力和生态系统功能中发挥重要作用。我们的研究发现,树木在干旱条件下能够通过增加净光合碳对根系分泌物碳的分配来维持与对照处理相同的根系分泌物输入量,对干旱胁迫下树木调整地下碳分配策略有了新的认识。考虑到现有模型在气候变化背景下估算地下碳分配格局存在很大差异,我们的数据为温带树种在水分限制下如何调整净同化碳分配到各土壤层以及整个根际范围中提供了宝贵信息。


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务