028-8525-3068
新闻动态 News
News 行业新闻

解读| 在半干旱草地长期氮沉降速率的增加持续增加了凋落物的分解

日期: 2022-05-27
标签:

原名:Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland

译名:在半干旱草地长期氮沉降速率的增加持续增加了凋落物的分解

期刊:New Phytologist

IF:10.151

发表时间:2020

第一作者:吕晓涛

主要单位:中国科学院沈阳应用生态研究所

一、研究背景

凋落物分解是陆地生态系统物质循环的重要过程,其速率主要受到凋落物质量、土壤性质、气候条件及土壤微生物群落的影响。氮沉降的逐渐增加对凋落物分解过程的诸多调控因素具有重要影响。厘清各种生物因子和非生物因子如何调控凋落物分解过程对氮沉降的响应,将有助于理解氮沉降对凋落物分解过程和生态系统物质循环的影响机制。因此本研究以中国北方半干旱草原长期氮素添加的实验平台为依托,在物种和群落水平上研究了氮沉降对该地区植物凋落物分解的影响。结果表明,氮素添加促进了物种水平和群落水平的凋落物分解,这种促进作用是由多种因素共同驱动。其中,氮素添加诱导的土壤酸化所导致的土壤中锰元素有效性增加是促进凋落物分解的重要因素。氮素添加通过降低土壤碳氮比和提高土壤细菌和真菌比也促进了凋落物分解,而氮素添加导致的凋落物化学质量增加对凋落物分解的促进作用相对较小。本研究揭示的这种土壤驱动作用对凋落物分解过程的改变可能持续地影响生态系统的养分循环、土壤有机质动态及生态系统功能。

二、研究结果

凋落物结构性C化合物和养分含量在不同物种的凋落物中不同。具体而言,羊草和冰草相对于针茅和羽茅,凋落物中的木质素,纤维素和半纤维素含量更低(图1a-c),然而凋落物中N,P,Ca,Mg和Mn含量更高(图1d-h),但是这些差异也依赖于N肥(凋落物类型和肥料有显著的交互作用)。群落混合值表现为中等浓度,因为它们主要由这四种高丰富度的禾草物种组成(图1)。一个明显的另外是群落混合凋落物中Ca和Mg的含量高于四种禾草物种的。

解读| 在半干旱草地长期氮沉降速率的增加持续增加了凋落物的分解

图1

对于大多数凋落物类型随着氮沉降速率的增加,结构性的C化合物(木质素,纤维素和半纤维素)的含量连续减少,但是养分含量(N,P,Ca,Mg和Mn)含量增加(图1)。然而,N添加没有显著改变羽茅中木质素含量和针茅和羽茅中的Ca含量,但是随着N添加的增加仍然可以观测到较低的木质素和较高的Ca含量的一般趋势。正如上文提到的,凋落物类型和N沉降速率之间存在显著的交互作用表明在某种程度上增加的N沉降效应在不同的凋落物类型中不同(图1),但是纵观N沉降的6个水平凋落物的质量变化格局在不同的凋落物类型中是显著稳定的。一些关键的土壤属性变量也随着N添加速率的增加而变化。土壤pH和CN比随着N添加速率降低,然而土壤N,有效Mn,和P随着N添加速率而增加(图2a-e)。基于真菌的PLFAs的真菌丰度随着N添加速率降低,细菌丰度随着N添加速率增加(图2f,g)。由于微生物群对N添加的特定性响应,细菌真菌的比随着N添加速率增加(图2h)。

解读| 在半干旱草地长期氮沉降速率的增加持续增加了凋落物的分解

图2

对于所有类型的凋落物,随着N添加速率的增加凋落物质量丢失增加。此外,对于所有5种类型的凋落物(有可识别的斜率),衰减常数k也随着N添加速率的增加而持续增加(图3)。特定的群落凋落物混合物在N沉降速率最高时的k值为0.36 yr-1,不添加N时的k值为0.27 yr-1。类似地,四种禾草的平均分解速率,在氮沉降速率最高时k的值为0.34 yr-1,不添加N肥时的k值为0.26 yr-1。不考虑N沉降水平时,所有凋落物类型中羊草的k值最大(0.34 yr-1),针茅的k值最低(0.26 yr-1)(图3)。

解读| 在半干旱草地长期氮沉降速率的增加持续增加了凋落物的分解

图3

衰减常数k与三种结构性的C的含量负相关,与养分正相关。除了羽茅,它的k值不与木质素相关也不与Ca的含量相关,针茅的k值也不与Ca的含量显著相关。N沉降对k值有正的效应,对微生物生物量(细菌和真菌PLFA),土壤pH和土壤CN比有负的效应,这些变量与k负相关(除了羊草和羽茅的k值,与细菌PLFA没有显著的关联),然而细菌和真菌的比与土壤N和Mn的含量都与k值正相关。

SEM分析的结果表明,N沉降通过间接效应驱动分解的加速。在这些间接路径中,低pH引起了的土壤有效Mn的含量增加是解释k值变异的主要因子(图4)。有趣的是,凋落物中Mn的含量越高,k值越大。其它的路径是相对次要的,较高的土壤细菌真菌比值,有效P含量以及凋落物N含量对k值有类似的正效应,并且较高的土壤CN比和较高的凋落物木质素含量对k值有类似的负效应(图4)。土壤细菌和真菌的比值似乎共同受土壤pH转变的影响。N添加对凋落物的分解仍然有直接的正效应,尽管相对于其它间接效应能够解释的变异较小。

解读| 在半干旱草地长期氮沉降速率的增加持续增加了凋落物的分解

图4

三、结论

半干旱草地超过8年的连续氮添加,4个不同禾草物种的凋落物和特定的处理的群落混合物分解随着N添加速率的增加而快速增加。本研究确定了土壤有效锰是决定快速分解的重要因子,尽管较高的凋落物N和较低的凋落物木质素含量在N添加下在一定的程度上也解释了较高的分解速率。N添加下较低的土壤pH使锰沿着其它的养分,例如P和Ca和Mg,在本研究中没有测量,在土壤中更有效。N沉降通过降低土壤pH增加土壤有效锰进而间接影响分解。N添加第二个重要的影响是通过降低土壤CN比,改变微生物群落,转变成细菌通道能够通过更快速的分解增加C和养分循环。本研究提供了强有力的证据,N添加驱动的土壤pH的间接影响而不是对凋落物质量改变的直接影响在凋落物分解中起重要作用。土壤驱动的凋落物分解对于养分循环,土壤有机质动态和生态系统功能可能有持续很久的影响,即使N沉降随着时间的推移减少。


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
  • 点击次数: 0
    2024 - 09 - 10
    本标准规定了去除杂质、风干、烘干、磨碎等制备森林植物及森林枯枝落叶层样品的方法。本标准适用于森林植物及森林枯枝落叶层样品的制备。样品制备流程 1、去除杂质  植物样品,如果是叶子,要用清洁的湿纱布揩擦干净,如果是树皮或根,则将其表面的干土用刷子把它刷净;微量元素分析用的样品须用1~3g/L去垢剂溶液洗涤,再用水淋净。森林枯枝落叶层样品要挑尽混在其间的石砾、土块等非有机物质。 2、风干和烘干  把揩擦干净的植物新鲜样品及森林枯枝落叶层样品放在通风的地方,铺成薄层,并经常翻动使尽快风干,切不可使其霉变,风干后装入布口袋中。在有烘箱的条件下,可把擦干净的植物新鲜样品及森林枯枝落叶层样品松松地放入烘箱中,一般分两步干燥:先将植物新鲜样品在80~90℃鼓风烘箱中烘15~ 30 min(松软组织烘15 min,致密坚实的组织烘30 min),然后降温至65℃,森林枯枝落叶层样品可直接 在65℃烘干。干燥时间须视新鲜样品含水量而定,通常为12~14 h。然后装入布口袋中。 3、磨碎  样品磨碎前需在65℃烘箱中烘到发脆,然后再进行磨碎处理。如果只测定氮、磷、钾、钠、钙、镁,则可用植物粉碎机磨碎,并通过2mm筛孔,然后装于磨口广口瓶中备用。若分析项目除以上内容外,还要测定微量元素,则样品可用不锈钢剪刀剪细或放在研钵中研碎,并通过2 mm尼龙筛孔,然后装入磨口广口瓶中备用。木材试样可用刨子刨成刨花或用刀劈成小块后再用不锈钢剪刀剪细,装于磨口广口瓶中备用。注:1、已发霉的样品不能用来作森林植物的化学分析,因发霉可促进样品内部酶的催化作用,造成有机物质的严重损失。2、制备样品时应防止烟雾和灰尘污染。更多检测相关内容so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 08 - 30
    原名:Characteristics of dissolved black carbon in riverine surface microlayer译名:河流表层中溶解性黑碳的特征期刊:Marine Pollution BulletinIF:5.3发表日期:2023.07第一作者:Vaezzadeh, Vahab 中国科学院广州地球化学研究所有机地球化学国家重点实验室 粤港澳环境污染与控制联合实验室一、背景黑碳(BC)是由生物质和化石燃料不完全燃烧产生的。根据BC的结构和土壤组成,土壤中的BC最终会生物降解并在孔隙水中溶解,从而通过地表径流输送到水生环境中。BC的溶解形式(DBC)通过河流进入海洋,由于其难降解的特性,对地球上的碳循环具有重要意义。先前使用(BPCAs)苯多羧酸方法的研究已经证明了河流和海洋中不同的DBC特征。虽然DBC的河流输出被认为是海洋DBC库的主要贡献者,其速率为27 Tg -1C-1y ,但关于河流DBC的含量和特征(结构和同位素特征)的数据缺乏。表层微层(SML)厚度为1 ~ 1000 μm,是大气和水生环境之间的分界线,与下层相比,具有不同的生物地球化学特性。SML在(可溶性有机碳)DOC及其难熔部分的扩散气水交换中起着重要作用,既是DBC的来源,也是DBC的汇。目前,有机污染物在SML中的富集已经得到了广泛的研究,而空气-水界面的DBC研究一直被忽视。因此,通过对珠江(PR)上、中和下游的SML中DBC含量组成及其同位素的研究弥补河流DBC特征和河口DBC的运输机制的数据的缺失以及有助于更好的理解DBC沿陆-海洋连续体的运输和命运。二、科学问题(1)分析从PR中采集的SML样本中DBC的含量、组成和δ13C特征。(2)将SML中DBC的特征和来源与全球不同水生生态系统的现有文献进行比较。三、材料与方法(1)SML水样采集于2020年10月东...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务