028-8525-3068
新闻动态 News
News 行业新闻

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

日期: 2022-05-20
标签:

文献解读


译名:氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

原名:More soil organic carbon is sequestered through the mycelium-pathway than through the root-pathway under nitrogen enrichment in an alpine forest

期刊名称:Global Change Biology

影响因子: 10.151 (2020)

第一作者:朱晓敏,张子良

通讯作者:尹华军


01

摘要


植物根系与相关菌根真菌在调控森林土壤碳(C)循环中发挥着重要作用。然而,再氮(N)沉降加剧的条件下,根系和外生菌根菌丝是否以及如何差异化地影响高寒森林土壤有机碳(SOC)积累尚不清楚。基于此,以外生菌根(ECM)高度共生的亚高山针叶林--云杉(Picea asperata)为试验对象,采用内生长管技术区分根系和菌丝作用(图 1右),区分和量化了氮添加(0 vs.25kg N ha-1 yr-1)下根系/菌丝途径对森林SOC积累的贡献幅度、方向与潜在作用机制。研究发现:无N添加处理下,根系途径增加SOC,而菌丝途径减少SOC。相对于无N添加处理而言,氮添加促进根系途径对SOC积累的正效应,SOC从18.02 mg C g-1增加至20.55 mg C g-1;而氮添加抵消了菌丝途径对SOC积累的负效应,SOC减少量从5.62 mg C g-1下降至0.57 mg C g-1。换言之,氮添加诱导的根系途径和菌丝途径的SOC增量分别为1.62~2.21 mg C g-1 和 3.23~4.74 mg C g-1。菌丝途径对SOC增加的贡献高于根系途径的主要原因是菌丝途径具有更高效运转的微生物C泵(MCP),氮添加下菌丝途径介导的微生物残体C增量占SOC增量的比例可达80%以上,而这一比例在根系途径中仅为54%左右。氮添加下菌丝途径具有更强的真菌代谢活性以及真菌残体C与土壤矿物结合能力是菌丝途径MCP高效运转的重要原因。总之,我们的研究强调了在氮沉降不断加剧背景下,森林外延菌丝及其介导的菌丝际C过程在调控高寒森林稳定性SOC的形成和积累中扮演着极其关键的角色。


02

研究背景

土壤是森林生态系统最大的碳(C)汇,其C储量的微弱变化都将对全球气候和碳循环产生深远影响。相应地,森林土壤C汇功能维持与优化管理已成为缓解全球气候变化压力、实现碳中和的重要途径之一。作为链接植物-土壤的核心纽带,根系除了作为吸收养分和水分的门户外,还通过分泌、周转与菌根共生等一系列生命活动深刻调控土壤C循环诸多关键过程,是深入理解土壤C源/汇变化与高效发挥土壤固碳功能的关键环节。地处高纬度/高海拔地区的高寒针叶林通常与外生菌根(ECM;简称菌根)共生,并通过产生大量的外延菌丝在土壤中形成庞大、功能多样的菌丝网络系统。树木将大量光合C分别通过根系和菌丝途径转移到土壤中,在土壤中形成了两个独特的微生物热点区,即“根际”和“菌丝际”(图1a)。由于两种途径的C源在输入数量和性质、周转以及留存上的差异,它们可通过不同的作用途径与机理来调控土壤C-养分循环过程,加剧了森林根系--土壤--微生物互作过程的复杂性和不可预知性。然而,尽管菌根在调控土壤C循环中扮演着重要角色已成为广泛共识,但现有研究更多地将根系和外生菌根外延菌丝作用视为一个整体考虑,缺乏对叠加环境变化后根系/菌丝途径调控土壤C形成、积累和稳定效应差异的细微辨识与区分,极大地限制了对多变环境变化下森林菌根活动介导的土壤碳汇效应与调控机制的深入认识。

为此,本研究为此,中科院成都生物研究所森林生态过程与调控项目组尹华军团队以外生菌根(ECM)高度共生的亚高山针叶林--云杉(Picea asperata)为试验对象,采用内生长管技术区分根系和菌丝作用(图 1b),区分和量化了氮添加(0 vs.25kg N ha-1 yr-1)下根系/菌丝途径对森林SOC积累的贡献幅度与方向。在此基础上,借助生物标志物(长链脂肪酸、木质素酚类和氨基糖)分析技术,分析了两种途径下SOC分子组成(植物源C与微生物源C),精准量化和评估了两种途径下N添加诱导的微生物碳泵(Microbial carbon pump,MCP)能效变化,即N诱导的微生物残体C增量占SOC增量的比例。同时,结合土壤微生物群落结构、胞外酶活性以及SOC物理-化学稳定性分析,辨识了氮沉降下根系/菌丝两种途径介导的SOC储量和分子组成变化的潜在调控机制。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图1根系/菌丝途径对土壤碳-养分影响示意图(a)与原位内生长管试验设计示意图(b)。


03

主要结果

1) 氮沉降通过根系和菌丝途径使SOC含量增加了4.85~6.95 mg C g-1,其中菌丝途径贡献了约68%的SOC增量(3.23~4.74 mg C g-1),表明了外生菌根主导的森林中菌丝途径对N添加诱导的SOC增加具有重要作用(图 2)。导致根系途径和菌丝途径对土壤SOC积累的贡献差异可能源于氮添加下两种途径的SOC物理、化学保护机制的响应幅度有所不同,表现为氮添加下菌丝途径黏-粉粒组分C和Fe/Al氧化物的增幅均高于根系途径,即菌丝途径具有更高的SOC物理-化学稳定性(图 3a, b,图4)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 2 氮添加诱导的根系/菌丝途径SOC含量变化。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 3氮添加下根系/菌丝途径不同土壤颗粒组分(大团聚体:2000 μm ~250 μm, 微团聚体:250 μm~53μm, 黏-粉粒: < 53μm)有机碳变化 (a)。氮添加诱导的微团聚体C与黏-粉粒C增量与总SOC增量的回归分析(b)。氮添加下两种途径不同土壤颗粒组分有机碳分子组成(植物源C vs. 微生物残体C)的变化(c)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 4 氮沉降对高寒针叶林根系途径和菌丝途径有机碳化学保护作用的影响。

2) 无论是在根系途径还是菌丝途径,微生物残体C对氮添加诱导的SOC增量的贡献均大于植物源C,根系途径微生物残体C增量占SOC增量的56~58%,而菌丝途径微生物残体C增量占SOC增量的65~80%)(图 5),表明微生物碳泵能效在不同微生物热点区(如,根际、菌丝际)可能存在显著差别,进而影响稳定性SOC的形成和积累。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 5 氮添加下根系途径(a, b)和菌丝途径(c, d)植物源C和微生物残体C含量(mg g-1)的变化以及其对土壤有机碳增量的相对贡献(植物源或微生物残体C增量/SOC增量,%)。数值表示为两种途径下不施氮处理与施氮处理之间的差值。

3) 真菌残体C对稳定性有机碳的积累起到至关重要的作用。菌丝途径真菌残体碳增量对SOC增量的贡献约为根系途径的2倍(图 5)。线性相关分析表明,两种途径下真菌残体贡献的差异可能与菌丝途径具有更高的真菌代谢活性以及更强的真菌残体C与土壤矿物结合能力有关(图 6)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 6 根系/菌丝途径下细菌/真菌残体C增量对氮添加下SOC增量的相对贡献与细菌/真菌生物量、NAG酶活性的线性回归分析(a-c)。黏-粉粒组分中真菌残体C增量对其SOC增量的贡献与总土中真菌残体C增量对其SOC增量的贡献的线性回归分析(d)。


04

重要结论

基于上述结果,本研究提出了一个概念框架描述氮沉降增加背景下外生菌根主导森林植物根系、外延菌丝及其介导的相关生物地球化学过程在土壤有机碳固持中的作用效应(图 7)。研究结果表明氮沉降增加背景下菌丝途径可能通过微生物碳泵的高效运转促进土壤有机碳积累,强调了菌丝及其介导的菌丝际C过程在调控森林土壤有机碳动态中发挥着至关重要的作用。上述概念框架为理解高寒针叶林SOC动态响应全球环境变化(如N沉降、CO2浓度、温度、降水格局的变化)提供了新见解,并推动了多变环境下森林菌根活动介导的生物地球化学效应对土壤有机碳形成、积累和稳定性影响的评估。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 7 氮沉降增加背景下外生菌根主导森林根系/菌丝对土壤有机碳积累(g m-2 yr-1)的相对贡献。PLRC: 植物源C; BRC: 细菌残体C; FRC: 真菌残体C; UNIC: 未识别碳组分。图中加号之后的数值表示相对于不加氮处理而言,氮添加诱导的SOC碳库含量及植物源/微生物源C含量的增量。括号内的百分比表示N诱导的植物源/微生物源C增量对SOC增量的贡献大小。



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
  • 点击次数: 0
    2024 - 09 - 10
    本标准规定了去除杂质、风干、烘干、磨碎等制备森林植物及森林枯枝落叶层样品的方法。本标准适用于森林植物及森林枯枝落叶层样品的制备。样品制备流程 1、去除杂质  植物样品,如果是叶子,要用清洁的湿纱布揩擦干净,如果是树皮或根,则将其表面的干土用刷子把它刷净;微量元素分析用的样品须用1~3g/L去垢剂溶液洗涤,再用水淋净。森林枯枝落叶层样品要挑尽混在其间的石砾、土块等非有机物质。 2、风干和烘干  把揩擦干净的植物新鲜样品及森林枯枝落叶层样品放在通风的地方,铺成薄层,并经常翻动使尽快风干,切不可使其霉变,风干后装入布口袋中。在有烘箱的条件下,可把擦干净的植物新鲜样品及森林枯枝落叶层样品松松地放入烘箱中,一般分两步干燥:先将植物新鲜样品在80~90℃鼓风烘箱中烘15~ 30 min(松软组织烘15 min,致密坚实的组织烘30 min),然后降温至65℃,森林枯枝落叶层样品可直接 在65℃烘干。干燥时间须视新鲜样品含水量而定,通常为12~14 h。然后装入布口袋中。 3、磨碎  样品磨碎前需在65℃烘箱中烘到发脆,然后再进行磨碎处理。如果只测定氮、磷、钾、钠、钙、镁,则可用植物粉碎机磨碎,并通过2mm筛孔,然后装于磨口广口瓶中备用。若分析项目除以上内容外,还要测定微量元素,则样品可用不锈钢剪刀剪细或放在研钵中研碎,并通过2 mm尼龙筛孔,然后装入磨口广口瓶中备用。木材试样可用刨子刨成刨花或用刀劈成小块后再用不锈钢剪刀剪细,装于磨口广口瓶中备用。注:1、已发霉的样品不能用来作森林植物的化学分析,因发霉可促进样品内部酶的催化作用,造成有机物质的严重损失。2、制备样品时应防止烟雾和灰尘污染。更多检测相关内容so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 08 - 30
    原名:Characteristics of dissolved black carbon in riverine surface microlayer译名:河流表层中溶解性黑碳的特征期刊:Marine Pollution BulletinIF:5.3发表日期:2023.07第一作者:Vaezzadeh, Vahab 中国科学院广州地球化学研究所有机地球化学国家重点实验室 粤港澳环境污染与控制联合实验室一、背景黑碳(BC)是由生物质和化石燃料不完全燃烧产生的。根据BC的结构和土壤组成,土壤中的BC最终会生物降解并在孔隙水中溶解,从而通过地表径流输送到水生环境中。BC的溶解形式(DBC)通过河流进入海洋,由于其难降解的特性,对地球上的碳循环具有重要意义。先前使用(BPCAs)苯多羧酸方法的研究已经证明了河流和海洋中不同的DBC特征。虽然DBC的河流输出被认为是海洋DBC库的主要贡献者,其速率为27 Tg -1C-1y ,但关于河流DBC的含量和特征(结构和同位素特征)的数据缺乏。表层微层(SML)厚度为1 ~ 1000 μm,是大气和水生环境之间的分界线,与下层相比,具有不同的生物地球化学特性。SML在(可溶性有机碳)DOC及其难熔部分的扩散气水交换中起着重要作用,既是DBC的来源,也是DBC的汇。目前,有机污染物在SML中的富集已经得到了广泛的研究,而空气-水界面的DBC研究一直被忽视。因此,通过对珠江(PR)上、中和下游的SML中DBC含量组成及其同位素的研究弥补河流DBC特征和河口DBC的运输机制的数据的缺失以及有助于更好的理解DBC沿陆-海洋连续体的运输和命运。二、科学问题(1)分析从PR中采集的SML样本中DBC的含量、组成和δ13C特征。(2)将SML中DBC的特征和来源与全球不同水生生态系统的现有文献进行比较。三、材料与方法(1)SML水样采集于2020年10月东...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务