028-8525-3068
新闻动态 News
News 行业新闻

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

日期: 2022-05-20
标签:

文献解读


译名:氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

原名:More soil organic carbon is sequestered through the mycelium-pathway than through the root-pathway under nitrogen enrichment in an alpine forest

期刊名称:Global Change Biology

影响因子: 10.151 (2020)

第一作者:朱晓敏,张子良

通讯作者:尹华军


01

摘要


植物根系与相关菌根真菌在调控森林土壤碳(C)循环中发挥着重要作用。然而,再氮(N)沉降加剧的条件下,根系和外生菌根菌丝是否以及如何差异化地影响高寒森林土壤有机碳(SOC)积累尚不清楚。基于此,以外生菌根(ECM)高度共生的亚高山针叶林--云杉(Picea asperata)为试验对象,采用内生长管技术区分根系和菌丝作用(图 1右),区分和量化了氮添加(0 vs.25kg N ha-1 yr-1)下根系/菌丝途径对森林SOC积累的贡献幅度、方向与潜在作用机制。研究发现:无N添加处理下,根系途径增加SOC,而菌丝途径减少SOC。相对于无N添加处理而言,氮添加促进根系途径对SOC积累的正效应,SOC从18.02 mg C g-1增加至20.55 mg C g-1;而氮添加抵消了菌丝途径对SOC积累的负效应,SOC减少量从5.62 mg C g-1下降至0.57 mg C g-1。换言之,氮添加诱导的根系途径和菌丝途径的SOC增量分别为1.62~2.21 mg C g-1 和 3.23~4.74 mg C g-1。菌丝途径对SOC增加的贡献高于根系途径的主要原因是菌丝途径具有更高效运转的微生物C泵(MCP),氮添加下菌丝途径介导的微生物残体C增量占SOC增量的比例可达80%以上,而这一比例在根系途径中仅为54%左右。氮添加下菌丝途径具有更强的真菌代谢活性以及真菌残体C与土壤矿物结合能力是菌丝途径MCP高效运转的重要原因。总之,我们的研究强调了在氮沉降不断加剧背景下,森林外延菌丝及其介导的菌丝际C过程在调控高寒森林稳定性SOC的形成和积累中扮演着极其关键的角色。


02

研究背景

土壤是森林生态系统最大的碳(C)汇,其C储量的微弱变化都将对全球气候和碳循环产生深远影响。相应地,森林土壤C汇功能维持与优化管理已成为缓解全球气候变化压力、实现碳中和的重要途径之一。作为链接植物-土壤的核心纽带,根系除了作为吸收养分和水分的门户外,还通过分泌、周转与菌根共生等一系列生命活动深刻调控土壤C循环诸多关键过程,是深入理解土壤C源/汇变化与高效发挥土壤固碳功能的关键环节。地处高纬度/高海拔地区的高寒针叶林通常与外生菌根(ECM;简称菌根)共生,并通过产生大量的外延菌丝在土壤中形成庞大、功能多样的菌丝网络系统。树木将大量光合C分别通过根系和菌丝途径转移到土壤中,在土壤中形成了两个独特的微生物热点区,即“根际”和“菌丝际”(图1a)。由于两种途径的C源在输入数量和性质、周转以及留存上的差异,它们可通过不同的作用途径与机理来调控土壤C-养分循环过程,加剧了森林根系--土壤--微生物互作过程的复杂性和不可预知性。然而,尽管菌根在调控土壤C循环中扮演着重要角色已成为广泛共识,但现有研究更多地将根系和外生菌根外延菌丝作用视为一个整体考虑,缺乏对叠加环境变化后根系/菌丝途径调控土壤C形成、积累和稳定效应差异的细微辨识与区分,极大地限制了对多变环境变化下森林菌根活动介导的土壤碳汇效应与调控机制的深入认识。

为此,本研究为此,中科院成都生物研究所森林生态过程与调控项目组尹华军团队以外生菌根(ECM)高度共生的亚高山针叶林--云杉(Picea asperata)为试验对象,采用内生长管技术区分根系和菌丝作用(图 1b),区分和量化了氮添加(0 vs.25kg N ha-1 yr-1)下根系/菌丝途径对森林SOC积累的贡献幅度与方向。在此基础上,借助生物标志物(长链脂肪酸、木质素酚类和氨基糖)分析技术,分析了两种途径下SOC分子组成(植物源C与微生物源C),精准量化和评估了两种途径下N添加诱导的微生物碳泵(Microbial carbon pump,MCP)能效变化,即N诱导的微生物残体C增量占SOC增量的比例。同时,结合土壤微生物群落结构、胞外酶活性以及SOC物理-化学稳定性分析,辨识了氮沉降下根系/菌丝两种途径介导的SOC储量和分子组成变化的潜在调控机制。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图1根系/菌丝途径对土壤碳-养分影响示意图(a)与原位内生长管试验设计示意图(b)。


03

主要结果

1) 氮沉降通过根系和菌丝途径使SOC含量增加了4.85~6.95 mg C g-1,其中菌丝途径贡献了约68%的SOC增量(3.23~4.74 mg C g-1),表明了外生菌根主导的森林中菌丝途径对N添加诱导的SOC增加具有重要作用(图 2)。导致根系途径和菌丝途径对土壤SOC积累的贡献差异可能源于氮添加下两种途径的SOC物理、化学保护机制的响应幅度有所不同,表现为氮添加下菌丝途径黏-粉粒组分C和Fe/Al氧化物的增幅均高于根系途径,即菌丝途径具有更高的SOC物理-化学稳定性(图 3a, b,图4)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 2 氮添加诱导的根系/菌丝途径SOC含量变化。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 3氮添加下根系/菌丝途径不同土壤颗粒组分(大团聚体:2000 μm ~250 μm, 微团聚体:250 μm~53μm, 黏-粉粒: < 53μm)有机碳变化 (a)。氮添加诱导的微团聚体C与黏-粉粒C增量与总SOC增量的回归分析(b)。氮添加下两种途径不同土壤颗粒组分有机碳分子组成(植物源C vs. 微生物残体C)的变化(c)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 4 氮沉降对高寒针叶林根系途径和菌丝途径有机碳化学保护作用的影响。

2) 无论是在根系途径还是菌丝途径,微生物残体C对氮添加诱导的SOC增量的贡献均大于植物源C,根系途径微生物残体C增量占SOC增量的56~58%,而菌丝途径微生物残体C增量占SOC增量的65~80%)(图 5),表明微生物碳泵能效在不同微生物热点区(如,根际、菌丝际)可能存在显著差别,进而影响稳定性SOC的形成和积累。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 5 氮添加下根系途径(a, b)和菌丝途径(c, d)植物源C和微生物残体C含量(mg g-1)的变化以及其对土壤有机碳增量的相对贡献(植物源或微生物残体C增量/SOC增量,%)。数值表示为两种途径下不施氮处理与施氮处理之间的差值。

3) 真菌残体C对稳定性有机碳的积累起到至关重要的作用。菌丝途径真菌残体碳增量对SOC增量的贡献约为根系途径的2倍(图 5)。线性相关分析表明,两种途径下真菌残体贡献的差异可能与菌丝途径具有更高的真菌代谢活性以及更强的真菌残体C与土壤矿物结合能力有关(图 6)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 6 根系/菌丝途径下细菌/真菌残体C增量对氮添加下SOC增量的相对贡献与细菌/真菌生物量、NAG酶活性的线性回归分析(a-c)。黏-粉粒组分中真菌残体C增量对其SOC增量的贡献与总土中真菌残体C增量对其SOC增量的贡献的线性回归分析(d)。


04

重要结论

基于上述结果,本研究提出了一个概念框架描述氮沉降增加背景下外生菌根主导森林植物根系、外延菌丝及其介导的相关生物地球化学过程在土壤有机碳固持中的作用效应(图 7)。研究结果表明氮沉降增加背景下菌丝途径可能通过微生物碳泵的高效运转促进土壤有机碳积累,强调了菌丝及其介导的菌丝际C过程在调控森林土壤有机碳动态中发挥着至关重要的作用。上述概念框架为理解高寒针叶林SOC动态响应全球环境变化(如N沉降、CO2浓度、温度、降水格局的变化)提供了新见解,并推动了多变环境下森林菌根活动介导的生物地球化学效应对土壤有机碳形成、积累和稳定性影响的评估。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 7 氮沉降增加背景下外生菌根主导森林根系/菌丝对土壤有机碳积累(g m-2 yr-1)的相对贡献。PLRC: 植物源C; BRC: 细菌残体C; FRC: 真菌残体C; UNIC: 未识别碳组分。图中加号之后的数值表示相对于不加氮处理而言,氮添加诱导的SOC碳库含量及植物源/微生物源C含量的增量。括号内的百分比表示N诱导的植物源/微生物源C增量对SOC增量的贡献大小。



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 03 - 14
    栢晖,第三方专业科研检测机构2025年3月8日下午13点,栢晖生物举行了一年一度的“安全日”活动。本次活动分为“安全知识培训”和“消防实操演练”两个环节,旨在进一步提升全员安全意识和应急处置能力。活动伊始,总经理杨锦兀发表讲话,介绍了举办“安全日”活动的初心与意义,并强调实验室安全对企业和员工的重要性。他指出,只有将安全理念内化于心、外化于行,才能保障科研工作的有序开展。在随后的安全知识培训中,实验室张副经理围绕灭火器使用、试剂管理、气瓶安全和现场应急处理等内容进行了系统讲解。张副经理结合真实案例,深入浅出地讲解了灭火器的正确操作步骤、火灾应对要点,以及实验室试剂的分类、存储和废弃处理规范等。通过图示和现场互动,全体员工对安全操作有了更清晰、更全面的认识。消防演练环节中,张副经理现场示范灭火器的正确使用方法,并组织员工逐一进行实操训练。通过动手演练,大家切实掌握了应急灭火技能,提升了面对突发状况的应对能力。安全,是科研顺利推进的前提,也是企业可持续发展的保障。栢晖生物始终坚持“安全第一、预防为主”的原则,持续夯实安全管理基础,营造更加安全、高效的实验环境。
  • 点击次数: 0
    2025 - 03 - 05
    文献解读原名:Multitrophic interactions support belowground carbon sequestrationthrough microbial necromass accumulation in dryland biocrusts译名:多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存期刊:Soil Biology and BiochemistryIF:9.8发表日期:2025年1月第一作者:石佳 中国农业大学 博士研究生通讯作者:王祥 中国农业大学 教授1背景土壤有机碳(SOC)是全球最大的陆地有机碳库,估计有1500-2400 Pg。SOC在调节全球碳储量和通量方面发挥着重要作用。土壤微生物被视为土壤碳动态的主要调节因子。一般来说,微生物通过分解减少SOC库存,同时通过形成微生物生物量和稳定坏死残留物来促进稳定的碳库。最近对土壤生物标志物的全球评估表明,微生物尸体占SOC库的50%,而活微生物生物量不到5%。因此,需要深入了解控制微生物生命和死亡过程的机制,以揭示全球碳循环的复杂性,并制定有效的土壤管理策略。如生物物理特征、细胞化学组成和生活史等,影响土壤有机物循环与微生物残体碳(MNC)积累。碳利用效率(CUE)衡量转化为微生物生物量的有机碳占比,反映土壤有机碳(SOC)平衡,与 MNC、SOC 的关系存争议。竞争、互利共生和捕食等生物相互作用,影响微生物残体形成与性质。土壤微生物是食物网基础,种间竞争和高营养级捕食影响其存亡与生物量向残体的转化。营养级内和级间的相互作用,会影响 MNC 积累与 SOC 。2提出假设(1)多个营养级类群会介导土壤微生物残体碳的积累。(2)营养级内的资源竞争和跨营养级的掠食性捕食,都可能导致土壤碳更高效地分解,以及微生物残体积累减少。3材料与方法(1)研究区域位于中国西北部陕西省神木市...
  • 点击次数: 0
    2025 - 03 - 01
    栢晖生物成立于2014年,致力于为生态、农业、林业等科学研究领域提供专业的检验检测服务。公司总部位于成都市成华区四川检验检测创新科技园,实验室规模近3000平,拥有成熟、完善的实验室管理体系。01招聘岗位概览01技术支撑(3人,6-15k)岗位要求:1.生态学、农学、土壤学、林学、草学、环境工程专业硕士,接受应届生;2.有相关实验经验(氨基糖,木质素酚,土壤酶活,有机酸检测,磷组分,PLFA,微生物碳氮磷,有机氮组分等),对于常规实验方法熟悉;3.熟悉相关实验室仪器设备(如:TOC仪,元素分析仪,液相等),了解并掌握相关实验数据的分析能力;4.性格外向,沟通能力强,能适应偶尔出差;岗位职责:1.项目前期对接(回复技术咨询,实验方案确认等);2.监督项目进度(与实验室对接检测要求,监督实验进度、确认实验数据);3.项目后期处理(追踪数据发放,协助处理项目结算等相关问题)。工作地点:成都02品牌经理(9人,6-15k)岗位要求:1、生态学、农学、土壤学、林学、草学、环境工程专业本科及以上学历,23及24届研究生优先,优秀25届亦可;2、有相关实验经验(氨基糖,木质素酚,土壤酶活,有机酸检测,磷组分,PLFA,微生物碳氮磷,有机氮组分等),对于常规实验方法熟悉;3、性格外向,沟通能力强,能适应出差;4、工作踏实,自律性和执行能力强,具有积极进取的精神和不断学习的态度;5、有第三方检测机构相关经验者优先考虑。岗位职责:1、负责所在区域高校和企业市场的开拓推广工作,进入高校开展线下讲座、企业宣讲等活动;2、定期拜访高校和企业相关重点客,通过邮件、直播讲座、电话及微信等与需求客户维持良好的检测合作关系;3、主动学习各种专业知识,关注行业动态及政策;4、负责完成上级领导布置的业绩目标和工作目标;工作地点(驻点城市):北京 广州 南京 杭州 昆明 西安 长沙 沈阳 福州03项目管理(3人,...
  • 点击次数: 0
    2025 - 02 - 13
    木质素酚的来源木质素是土壤有机碳的重要组成部分,具有芳香单元的三维立体结构, 化学稳定性高,未经分离或化学转化,现有的分析技术很难对其进行直接定量分析。分子标志物的方法是目前用于测定土壤木质素含量和组成较为普遍的方法,即用木质素酚类化合物的含量,对木质素的含量及有机质来源进行指示。目前常用的处理方法是碱性氧化铜裂解出小分子单体,通过LC-DAD、LC-MS、GC-FID和GCMS测定。目标物质分类及应用意义香草基酚系列(V):香草酸、香草醛、香草乙酮丁香基酚系列(S):丁香酸、丁香醛、乙酰丁香酮肉桂基酚系列(C):对-香豆酸、阿魏酸对羟基酚系列(P):对羟基苯甲酸、对羟基苯甲醛、对羟基苯乙酮样品处理方法方法原理:土壤样品中木质素通过碱性氧化铜在高温下水解成单环酚盐类,调节pH=1,用液液萃取提取出酚类单体,经双(三甲基硅烷基)三氟乙酰胺(BSTFA)衍生,用GCMS分离检测,以保留时间和质谱特征离子定性,内标法定量。操作步骤:称0.5-1.0g(精确至0.0001g)样品于反应釜,加1.0g氧化铜和0.1g硫酸亚铁铵,混匀。加10mL氢氧化钠(2mol/L),氮气置换釜内空气15min,170 ℃ 水解3h,加40ug内标,转移,离心,固液分离,10mL超纯水分两次清洗沉淀,合并上清液。1+1盐酸调pH=1,暗处放置1h,离心,固液分离,0.1molL盐酸清洗沉淀两次,合并上清液。提取液加2g氯化钠,混匀,用30mL乙酸乙酯分3次萃取,收集合并有机相,过无水硫酸钠除水。40 ℃氮吹至干燥,加100uL吡啶和400uLBSTFA,70℃下反应3h,上机测定。校正曲线:取适量木质素酚标准使用液,加入到预先装有1mL乙酸乙酯的衍生瓶中,加40ug内标,配制成系列标准溶液,40 ℃下氮气吹干,衍生。数据计算及分析定性方法:通过样品中目标物与标准系列中目标物的保留时间、质谱图,碎片离...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务