028-8525-3068
新闻动态 News
News 行业新闻

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

日期: 2022-05-20
标签:

文献解读


译名:氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

原名:More soil organic carbon is sequestered through the mycelium-pathway than through the root-pathway under nitrogen enrichment in an alpine forest

期刊名称:Global Change Biology

影响因子: 10.151 (2020)

第一作者:朱晓敏,张子良

通讯作者:尹华军


01

摘要


植物根系与相关菌根真菌在调控森林土壤碳(C)循环中发挥着重要作用。然而,再氮(N)沉降加剧的条件下,根系和外生菌根菌丝是否以及如何差异化地影响高寒森林土壤有机碳(SOC)积累尚不清楚。基于此,以外生菌根(ECM)高度共生的亚高山针叶林--云杉(Picea asperata)为试验对象,采用内生长管技术区分根系和菌丝作用(图 1右),区分和量化了氮添加(0 vs.25kg N ha-1 yr-1)下根系/菌丝途径对森林SOC积累的贡献幅度、方向与潜在作用机制。研究发现:无N添加处理下,根系途径增加SOC,而菌丝途径减少SOC。相对于无N添加处理而言,氮添加促进根系途径对SOC积累的正效应,SOC从18.02 mg C g-1增加至20.55 mg C g-1;而氮添加抵消了菌丝途径对SOC积累的负效应,SOC减少量从5.62 mg C g-1下降至0.57 mg C g-1。换言之,氮添加诱导的根系途径和菌丝途径的SOC增量分别为1.62~2.21 mg C g-1 和 3.23~4.74 mg C g-1。菌丝途径对SOC增加的贡献高于根系途径的主要原因是菌丝途径具有更高效运转的微生物C泵(MCP),氮添加下菌丝途径介导的微生物残体C增量占SOC增量的比例可达80%以上,而这一比例在根系途径中仅为54%左右。氮添加下菌丝途径具有更强的真菌代谢活性以及真菌残体C与土壤矿物结合能力是菌丝途径MCP高效运转的重要原因。总之,我们的研究强调了在氮沉降不断加剧背景下,森林外延菌丝及其介导的菌丝际C过程在调控高寒森林稳定性SOC的形成和积累中扮演着极其关键的角色。


02

研究背景

土壤是森林生态系统最大的碳(C)汇,其C储量的微弱变化都将对全球气候和碳循环产生深远影响。相应地,森林土壤C汇功能维持与优化管理已成为缓解全球气候变化压力、实现碳中和的重要途径之一。作为链接植物-土壤的核心纽带,根系除了作为吸收养分和水分的门户外,还通过分泌、周转与菌根共生等一系列生命活动深刻调控土壤C循环诸多关键过程,是深入理解土壤C源/汇变化与高效发挥土壤固碳功能的关键环节。地处高纬度/高海拔地区的高寒针叶林通常与外生菌根(ECM;简称菌根)共生,并通过产生大量的外延菌丝在土壤中形成庞大、功能多样的菌丝网络系统。树木将大量光合C分别通过根系和菌丝途径转移到土壤中,在土壤中形成了两个独特的微生物热点区,即“根际”和“菌丝际”(图1a)。由于两种途径的C源在输入数量和性质、周转以及留存上的差异,它们可通过不同的作用途径与机理来调控土壤C-养分循环过程,加剧了森林根系--土壤--微生物互作过程的复杂性和不可预知性。然而,尽管菌根在调控土壤C循环中扮演着重要角色已成为广泛共识,但现有研究更多地将根系和外生菌根外延菌丝作用视为一个整体考虑,缺乏对叠加环境变化后根系/菌丝途径调控土壤C形成、积累和稳定效应差异的细微辨识与区分,极大地限制了对多变环境变化下森林菌根活动介导的土壤碳汇效应与调控机制的深入认识。

为此,本研究为此,中科院成都生物研究所森林生态过程与调控项目组尹华军团队以外生菌根(ECM)高度共生的亚高山针叶林--云杉(Picea asperata)为试验对象,采用内生长管技术区分根系和菌丝作用(图 1b),区分和量化了氮添加(0 vs.25kg N ha-1 yr-1)下根系/菌丝途径对森林SOC积累的贡献幅度与方向。在此基础上,借助生物标志物(长链脂肪酸、木质素酚类和氨基糖)分析技术,分析了两种途径下SOC分子组成(植物源C与微生物源C),精准量化和评估了两种途径下N添加诱导的微生物碳泵(Microbial carbon pump,MCP)能效变化,即N诱导的微生物残体C增量占SOC增量的比例。同时,结合土壤微生物群落结构、胞外酶活性以及SOC物理-化学稳定性分析,辨识了氮沉降下根系/菌丝两种途径介导的SOC储量和分子组成变化的潜在调控机制。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图1根系/菌丝途径对土壤碳-养分影响示意图(a)与原位内生长管试验设计示意图(b)。


03

主要结果

1) 氮沉降通过根系和菌丝途径使SOC含量增加了4.85~6.95 mg C g-1,其中菌丝途径贡献了约68%的SOC增量(3.23~4.74 mg C g-1),表明了外生菌根主导的森林中菌丝途径对N添加诱导的SOC增加具有重要作用(图 2)。导致根系途径和菌丝途径对土壤SOC积累的贡献差异可能源于氮添加下两种途径的SOC物理、化学保护机制的响应幅度有所不同,表现为氮添加下菌丝途径黏-粉粒组分C和Fe/Al氧化物的增幅均高于根系途径,即菌丝途径具有更高的SOC物理-化学稳定性(图 3a, b,图4)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 2 氮添加诱导的根系/菌丝途径SOC含量变化。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 3氮添加下根系/菌丝途径不同土壤颗粒组分(大团聚体:2000 μm ~250 μm, 微团聚体:250 μm~53μm, 黏-粉粒: < 53μm)有机碳变化 (a)。氮添加诱导的微团聚体C与黏-粉粒C增量与总SOC增量的回归分析(b)。氮添加下两种途径不同土壤颗粒组分有机碳分子组成(植物源C vs. 微生物残体C)的变化(c)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 4 氮沉降对高寒针叶林根系途径和菌丝途径有机碳化学保护作用的影响。

2) 无论是在根系途径还是菌丝途径,微生物残体C对氮添加诱导的SOC增量的贡献均大于植物源C,根系途径微生物残体C增量占SOC增量的56~58%,而菌丝途径微生物残体C增量占SOC增量的65~80%)(图 5),表明微生物碳泵能效在不同微生物热点区(如,根际、菌丝际)可能存在显著差别,进而影响稳定性SOC的形成和积累。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 5 氮添加下根系途径(a, b)和菌丝途径(c, d)植物源C和微生物残体C含量(mg g-1)的变化以及其对土壤有机碳增量的相对贡献(植物源或微生物残体C增量/SOC增量,%)。数值表示为两种途径下不施氮处理与施氮处理之间的差值。

3) 真菌残体C对稳定性有机碳的积累起到至关重要的作用。菌丝途径真菌残体碳增量对SOC增量的贡献约为根系途径的2倍(图 5)。线性相关分析表明,两种途径下真菌残体贡献的差异可能与菌丝途径具有更高的真菌代谢活性以及更强的真菌残体C与土壤矿物结合能力有关(图 6)。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 6 根系/菌丝途径下细菌/真菌残体C增量对氮添加下SOC增量的相对贡献与细菌/真菌生物量、NAG酶活性的线性回归分析(a-c)。黏-粉粒组分中真菌残体C增量对其SOC增量的贡献与总土中真菌残体C增量对其SOC增量的贡献的线性回归分析(d)。


04

重要结论

基于上述结果,本研究提出了一个概念框架描述氮沉降增加背景下外生菌根主导森林植物根系、外延菌丝及其介导的相关生物地球化学过程在土壤有机碳固持中的作用效应(图 7)。研究结果表明氮沉降增加背景下菌丝途径可能通过微生物碳泵的高效运转促进土壤有机碳积累,强调了菌丝及其介导的菌丝际C过程在调控森林土壤有机碳动态中发挥着至关重要的作用。上述概念框架为理解高寒针叶林SOC动态响应全球环境变化(如N沉降、CO2浓度、温度、降水格局的变化)提供了新见解,并推动了多变环境下森林菌根活动介导的生物地球化学效应对土壤有机碳形成、积累和稳定性影响的评估。

GCB| 氮沉降增加背景下高寒森林通过菌丝途径对土壤有机碳固持的贡献高于根系途径

图 7 氮沉降增加背景下外生菌根主导森林根系/菌丝对土壤有机碳积累(g m-2 yr-1)的相对贡献。PLRC: 植物源C; BRC: 细菌残体C; FRC: 真菌残体C; UNIC: 未识别碳组分。图中加号之后的数值表示相对于不加氮处理而言,氮添加诱导的SOC碳库含量及植物源/微生物源C含量的增量。括号内的百分比表示N诱导的植物源/微生物源C增量对SOC增量的贡献大小。



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 11 - 29
    文献解读原名:Rhizosphere as a hotspot for microbial necromass depositioninto the soil carbon pool译名:根际是微生物残体进入土壤碳库的热点区期刊:Journal of EcologyIF: 5.3发表日期:2024.11.15第一作者:汪其同背景森林土壤是陆地生态系统最大的有机碳(SOC)库,高效发挥森林土壤碳汇功能是实现“双碳”战略目标的重要途径之一。相应地,科学认识森林土壤固碳过程与调控机制已成为当前森林生态学、土壤学领域重要的前沿基础科学问题与林业碳汇功能适应性管理的核心现实需求。近年来不断涌现的证据表明,微生物通过合成代谢而迭代积累的微生物残体很大程度上主导了SOC的长期积累和固持。其中,由于根源C持续输入在根系周围的根际微域形成了一个独特而又典型的微生物热点区,并伴随着更快的微生物生长和更强的微生物代谢活性,进而导致根际区微生物残体对长期SOC积累贡献能力比非根际区更为突出和明显。然而,目前大多研究通常将根际和非根际土壤视为一个均质有机体,而缺乏针对根际区SOC形成过程与稳定性机制的专一性试验研究,导致根际区土壤碳动态过程及其生态重要性在很大程度上未被探索和了解,已成为森林土壤碳汇功能变化认知最少且极为薄弱的关键环节之一。基于此,中国科学院成都生物研究所尹华军研究团队通过系统收集青藏高原典型高寒针叶林39个样点的根际和非根际土壤样品(图1),量化了根际和非根际土壤中有机碳和氨基糖的浓度,并通过计算根际相对于非根际土壤中增加的氨基糖与增加的有机碳的比例(RAS/SOC),评估了微生物残体对根际SOC积累的贡献程度。同时测定了根际土壤养分浓度和微生物生理性状,以揭示多变环境下根际微生物残体对SOC积累贡献的潜在微生物调控机制。图1  39个高寒针叶林采样点分布图我们假设:(1...
  • 点击次数: 0
    2024 - 11 - 21
    土壤酶活性,是指土壤酶催化物质转化的能力。常以单位时间内单位土壤的催化反应产物量或底物剩余量表示。土壤酶活性既包括已积累于土壤中的酶活性,也包括正在增殖的微生物向土壤释放的酶活性,它主要来源于土壤中的微生物,动物和植物。土壤酶活的分类:已知的酶根据酶促反应的类型可分为六大类。即水解酶、氧化还原酶、转移酶、裂合酶、异构酶和连接酶。1. 水解酶类: 酶促各种化合物中分子键的水解和裂解反应。主要包括蔗糖酶、淀粉酶、纤维素酶、脲酶、蛋白酶、磷酸酶等。2.氧化还原酶类: 指催化两分子间发生氧化还原作用的酶的总称。主要包括脱氢酶、过氧化氢酶、过氧化物酶、硝酸还原酶、亚硝酸还原酶等。3.转移酶类: 指能够催化除氢以外的各种化学官能团从一种底物转移到另一种底物的酶类,包括转氨酶、果聚糖蔗糖酶、转糖苷酶等。4.裂合酶类: 指催化由底物除去某个基团而残留双键的反应、或通过逆反应将某个基团加到双键上去的反应的酶的总称,主要包括谷氨酸脱羧酶、天门冬氨酸脱羧酶等。5.异构酶类: 酶促有机化合物转化成它的异构体的反应。6.连接酶类: 是一种催化两种大型分子以一种新的化学键结合一起的酶。测定方法分析:1.生化培养法作为酶活测定的重要方法之一,其又细分为分光光度法和滴定法。分光光度法:其基本原理是酶与底物混合经培养后产生某种带颜色的生成物,可在某一吸收波长下产生特征性波峰,再用分光光度计测定设定的标准物及生成物的吸光值,由此确定酶活性的含量。滴定法:如果产物之一是自由的酸性物质可用此法。如脂肪酶催化脂肪水解释放出脂肪酸,脂肪酸的含量可以通过滴定进行定量,通过计算反应过程中脂肪酸的增加量就可以计算出脂肪酶的酶活力。2.荧光法荧光法是一种基于荧光信号的酶活测定方法,其原理是通过测量酶促反应中荧光物质的变化来推算酶活性。荧光法具有较高的灵敏度和选择性,...
  • 点击次数: 0
    2024 - 11 - 14
    草原土壤储存有439 Gt有机碳(SOC),在调节区域乃至全球气候变化进程中起着重要作用。然而,全球气候变化背景下,大气氮沉降的“施肥效应”强烈地影响着土壤碳储存。因此,明确高寒草甸SOC组分对氮、磷富集的响应和潜在机制至关重要。西南民族大学高寒湿地生态保护研究创新团队马文明副研究员课题组依托青藏高原生态保护与畜牧业高科技研究示范基地和四川若尔盖高寒湿地生态系统国家野外科学观测研究站以红原高寒草甸为研究对象进行了长期氮磷添加实验。采取随机区组用尿素(CO(NH2)2)和过磷酸钙(Ca(H2PO4)2·H2O)设计7个施肥梯度,氮肥施尿素(46.65%N),磷肥施过磷酸钙(16%P2O5),施肥梯度分别为(0g尿素+0g过磷酸钙)/m2(CK)、(10g尿素)/m2(N10)、(30g尿素)/m2(N30)、(10g过磷酸钙)/m2(P10)、(30g过磷酸钙)/m2(P30)(5g尿素+5g过磷酸钙)/m2(NP10)、(15g尿素+15g过磷酸钙)/m2(NP30)。研究发现,氮和磷添加导致 SOC含量增加19.95%–36.66%;在相同施肥条件下,SOC含量随着施肥梯度的增加而增加,在N30处理下达到最高;N和P添加促进了脂肪族碳和芳香族碳的富集;与其他处理相比,NP30处理下SOC的稳定性最高,而P10处理下SOC的稳定性最低。表明N和P添加促进了不稳定碳的损失和稳定碳的富集,从而提高了SOC的稳定性,促进了高寒草甸SOC的封存。总体而言,氮磷添加改变了高寒草甸土壤有机碳的理化性质以及SOC的官能团组成,进而促进了SOC积累。因此,在退化的生态系统中添加氮和磷可能是改善土壤碳固存的有效措施。该项研究近期以题为Nitrogen and phosphorus supply controls stability of soil organic carbon in...
  • 点击次数: 0
    2024 - 11 - 11
    栢晖生物特色检测指标——同位素的测定:更所检测相关讯息so栢晖生物了解更多
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务