028-8525-3068
新闻动态 News
News 行业新闻

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

日期: 2022-05-11
标签:

原名:Root exudates with low C/N ratios accelerate CO2 emissions from paddy soil

译名:低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

期刊:Land Degradation & Development

IF:4.977

发表时间:2022.4

第一作者:Cai Guan

摘要

根系分泌物可显著调控微生物活性和土壤有机质(SOM)矿化。但根系分泌物及其碳氮比值(C/N)如何调控水稻土有机质矿化尚不清楚。本研究对水稻土添加具有不同碳氮比值(CN6、CN10、CN80和C-only)的模拟根系分泌物(葡萄糖、草酸和丙氨酸不同比例的混合液),以探究不同根系分泌物碳氮比值(C/N)调控水稻土有机质矿化潜在机制。结果显示:与只添加碳(C-only)的处理相比,其余添加根系分泌物(CN6、CN10、CN80)的处理中土壤CO2释放增加了1.8-2.3倍。低C/N比处理(CN6和CN10)代谢商(qCO2)比高C/N比处理(CN80和C-only)增加了12%,表明低C/N比处理下微生物通过增加N-水解酶合成从SOM中获得有机氮需要消耗更多能量。C获取酶/N获取酶比值与qCO2显著正相关。微生物量C/N比值与碳利用效率(CUE)显著负相关,表明高C/N比处理下由于N供给不足促进了N获取酶的释放。以上结果表明,根系分泌物的C/N化学计量比通过影响C和N获取酶的活性来调节微生物C/N比,从而影响微生物生物量的特定反应,进而控制SOM矿化。

研究背景

植物通过由根释放含碳化合物(根系分泌物)或通过相关微生物从土壤中快速吸收养分来改变土壤环境。约有1-10%的光合固定碳由根系分泌物释放至土壤中,其组分主要包括糖类、氨基酸、有机酸、酚类以及其它代谢物。这些物质除了可直接作为微生物利用的底物外,其C/N化学计量比对微生物的利用也具有重要影响。因此,阐明根系分泌物C/N比对微生物底物利用的具体影响及潜在机制对于理解土壤碳氮循环及土壤碳汇强度十分重要。

以往研究已经提出了几种机制来解释根系分泌物如何影响土壤有机质(SOM)的微生物分解。1.根系分泌物为促进微生物对SOM的分解和改变土壤化学和物理特性提供能量;2.不稳定C输入促进微生物生长,增加对氮的需求进而促进微生物从SOM中获取N;3.微生物对C和N的需求变化驱动群落结构变化从而影响微生物对SOM的降解。此外,还需要考虑根系分泌物C/N化学计量比的影响。

基于此,本研究通过不同C/N比的根系分泌物添加实验探究根系分泌物C/N比值变化如何影响微生物活性(胞外酶合成和微生物量化学计量比)以及SOM的降解。提出以下假设:1.只添加C(C-only)的处理会导致微生物资源比率失衡从而抑制微生物活性以及SOM降解;2.含氮物质的添加能够满足微生物的资源比率需求从而促进微生物生长和SOM降解。

主要结果

1. 模拟根系分泌物添加对SOM矿化的影响

各处理间CO2释放的时间动态基本一致。CO2释放速率在培养初期最高(1-4天),培养15天后呈指数下降。在培养末期,达到了一个稳定的水平,只有微小的波动。与对照(只添加等量水)相比,模拟分泌物添加使CO2释放累计量分别升高了25%(CN6)、25%(CN10)、20%(CN80)以及19%(C-only, 图1)。

在培养第3天时,低C/N比值分泌物(CN6和CN10)添加处理下微生物qCO2显著升高(图2a)。然而,所有处理的qCO2在培养第3-45天均显著下降,其下降幅度由大到小排序依次为:CN6 > CN10 > CN80 > C-only > control(图2a)。与之相反,CUE的下降幅度由大到小排序依次为:control > C-only > CN80 > CN10 > CN6(图2b)。这些结果表明,微生物从SOM矿化过程中获得有机氮需要相对较高的能量消耗。

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

 图1 培养45天内CO2释放速率(a)和CO2释放累积量(b)

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

图2 培养第3、12和45天的微生物代谢熵(qCO2, a)和碳利用效率(CUE, b)

2. 模拟根系分泌物添加对酶活性和微生物生物量的影响

与对照相比,添加分泌物的处理均促进胞外酶活性。BG和XYL活性升高幅度由大到小排序依次为:C-only > CN80 > CN10 > CN6 > control(图3)。与之相反,在培养第3天时,NAG活性与添加分泌物C/N比值负相关,即CN 6 > CN10 > CN80 > C-only。在培养第3天时,NAG活性与添加分泌物C/N比值正相关,即C-only > CN80 > CN10 > CN6(图3)。BG/NAG比值与qCO2显著正相关而与CUE显著负相关(图4a, b)。MBC/MBN比值与qCO2显著负相关而与CUE显著正相关(图4c, d)。

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

图3 培养第3、12和45天的胞外酶活性:β-1,4-glucosidase (BG, a), β-1,4-xylosidase (XYL, b), and β-1,4-N-acetyl-glucosaminidase (NAG, c)

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

图4 代谢熵(qCO2)与土壤酶化学计量(BG/NAG)(a)、碳利用效率(CUE)与土壤酶化学计量(BG/NAG)(b)、qCO2与微生物生物量化学计量(MBC/MBN)(c)之间的关系;CUE和微生物生物量化学计量(MBC/MBN)(d)

3. CO2释放速率的结构方程模型分析

SEM显示,各项变量解释了58%的CO2释放速率变异。土壤C/N比值对CO2释放速率具有显著的负效应(-0.29, p < 0.05, 图5),酶化学计量比值(BG/NAG和XYL/NAG)对其具有显著正效应(0.39, p < 0.001, 图5),但DOC/NH4+对其具有直接的负效应(0.30, p < 0.001, 图5)。

文献解读| 低碳氮比的根系分泌物添加促进了水稻土二氧化碳释放

图5 各项变量对CO2释放速率的影响

结论

C-only处理下,SOM降解速率最低,表明单纯的C添加抑制了微生物N代谢,从而减少了从SOM获取N的需求。与高C/N比值相比,低C/N比值的根系分泌物添加促进了SOM分解,表明高C/N比值的分泌物输入有利于SOM积累。以上结果表明,根系分泌物的化学计量比是植物-土壤系统C循环中的重要驱动因子。


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务