028-8525-3068
新闻动态 News
News 行业新闻

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

日期: 2022-03-01
标签:

原名:Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: A global meta-analysis

译名:氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

期刊:Soil Biology and Biochemistry

IF:8.312

发表时间:2021年12月6日

第一作者: Junxi Hu

通讯作者:黄从德

合作作者:Shixing Zhou, Xiong Liu, Feike A. Dijkstra

主要单位:

四川农业大学林学院,长江上游生态林业工程四川省重点实验室,成都;

国家林业和草原局,长江上游森林资源保护与生态安全重点实验室,四川成都;

摘要

人工N输入的增加改变了全球土壤碳储量,但微生物残体(氨基糖)对添加N的土壤碳的贡献尚不清楚。在此,我们对32篇文献进行了meta分析,并评估了N添加对微生物残体量的影响。结果表明,N添加的总体效应显著提高了真菌(葡萄糖胺,GluN)和细菌(胞壁酸,MurN;半乳糖胺,GalN)残体;但对微生物总残体量(总氨基糖)无显著影响。N添加对氨基糖的影响与生态系统类型有关。N添加增加了农田中GluN、MurN、GalN和总氨基糖的含量,而在森林中N添加仅增加了MurN的含量。在农田中,施N对微生物残体含量的影响取决于施N是单独施N还是与磷钾复合施N。其中,施N对细菌MurN、GalN、真菌GluN和总氨基糖含量无显著影响。而添加NPK显著提高了所有个体(GluN、MurN和GalN)和总氨基糖含量。此外,高施N量(>150 kg N ha−1 yr−1)和长期施N量(>10年)显著提高了农田各氨基糖和总氨基糖的含量,这可能是由于高施N量和长期施N刺激了微生物的生长。我们的研究结果表明,N添加增加了农田微生物残体量和森林细菌残体量,为全球持续的人为N输入改善微生物源碳的封存提供了重要信息。

关键词

N添加;微生物残体;土壤有机碳;氨基糖

前言

土壤有机质(Soil organic matter, SOM)是陆地上最大的有机碳(SOC)库,在全球碳C循环中发挥着重要作用。微生物在SOM转化过程有两种关键而又截然不同的作用。一方面,微生物可以通过分解代谢活动分解SOM并释放CO2;另一方面,微生物可以利用植物源C生成微生物产物或将其残体转化为非生命的SOM,从而促进SOM的形成和稳定。氨基糖是微生物残基和植物的组成成分,具体来说,葡萄糖胺(GluN)主要来源于真菌细胞壁的几丁质,胞壁酸(MurN)只存在于细菌的肽聚糖中,而半乳糖胺(GalN)主要由细菌合成。最近使用氨基糖生物标记物的研究表明,微生物残体可能占一半以上SOC,因此,需要对氨基糖进行研究,以提高对涉及微生物的C循环过程的认识。

关于氨基糖对N沉降的响应,目前还没有共识,研究表明,N沉降对氨基糖的影响是正面、负面或中性。这些不一致的模式可能归因于模拟N沉降速率的差异以及真菌和细菌生长所需N的差异。全球N肥的使用深刻影响了微生物群落和残体产量。此外,在大多数农业系统中,也会施用其他养分,如磷(P)和钾(K);在这种情况下,观察到的效应不能仅仅归因于N输入。综上所述,在不同生物群落中,N沉降和N肥施用对土壤微生物残体的影响尚缺乏共识。

基于32篇已发表的研究在内的全球数据集,我们采用荟萃分析方法研究了N沉降或N肥对土壤氨基糖的影响。我们的目标是回答以下问题:(1)不同的氨基糖(GluN、MurN、GalN和总氨基糖)对N添加的响应一致吗? (2)氨基糖对N添加的响应是否取决于P或K的联合添加? (3)氨基糖对N添加的响应是否取决于N添加速率、N添加持续时间和生态系统类型?

主要结果

1. 氨基糖对N添加的响应

在整个数据集中,不同的氨基糖对N的添加有不同的反应。其中,N添加增加了GluN、MurN和GalN的含量,但对总氨基糖含量没有显著影响(图1)。N添加对氨基糖的影响取决于生态系统类型。特别是,N添加增加了农田中GluN、MurN、GalN和总氨基糖的含量(图2),而在森林中,N添加仅增加了MurN的含量(图3)。

在农田生态系统中,N添加效应取决于是否施用其他养分。单独添加N对总氨基糖(Fig. 2a)、GluN (Fig. 2b)、MurN (Fig. 2c)和GalN (Fig. 2d)的含量没有显著影响,但添加NPK显著提高了各氨基酸和总氨基糖的含量(Fig. 2a-d)。此外,N添加对氨基酸含量的影响与N添加速率和时间有关,高N添加速率(>150 kg N ha−1 yr−1)和长期N添加速率(>10年)提高了所有氨基酸和总氨基酸含量(图2a-d)。除高施N量(>150 kg N ha−1 yr−1)对总氨基糖含量无显著影响外(图2a)。在森林生态系统中,N添加对氨基糖的影响取决于是否添加其他营养物质。仅施N对总氨基糖和GluN含量没有显著影响(图3a),但添加NP显著降低了它们的含量(图3a-b)。此外,低施N量(<50 kg N ha−1 yr−1)和短期施N量(<5年)增加了MurN含量(图3c)。

2. 氨基糖的响应与微生物PLFAs、TN、pH、SOC、N添加速率、N添加时间的相关性,以及在MAP、MAT和海拔的变化

GluN自然对数响应比与细菌PLFAs、真菌PLFAs、总PLFAs、pH、SOC、TN和N添加率的自然对数响应比显著正相关,但与海拔、MAP(年均温)、MAT(年均降雨量)和N添加时间的自然对数响应比不显著相关(图4)。MurN自然对数响应比与细菌PLFAs、真菌PLFAs、总PLFAs、pH和SOC的自然对数响应比呈正相关(图5)。GalN自然对数响应比与细菌PLFAs,真菌PLFAs,总PLFAs,PH和N添加率的自然对数响应比呈正相关(图6)。总氨基糖自然对数响应比与细菌PLFAs、真菌PLFAs、总PLFAs、pH、SOC、TN和N添加率的响应均呈显著正相关(图7)。

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图1 N添加对氨基糖的影响

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图2农田生态系统中总氨基糖(a)、GluN(b)、MurN(c)和GalN(d)含量对N添加的加权响应比和95%置信区间

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图3 森林生态系统中总氨基糖(a)、GluN(b)、MurN(c)和GalN(d)含量对N添加的加权响应比和95%置信区间

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图4 GluN的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系等

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图5 MurN的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系等

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图6 GalN的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图7 总氨基糖的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系等

讨论

1. N添加对氨基糖的总体影响

总的来说,我们的结果表明,N添加显著增加了真菌源GluN和细菌源MurN和GalN的含量(图1)。一方面,我们发现氨基糖的响应与微生物PLFAs的响应呈正相关,这表明,N添加下,氨基糖的增加可能归因于更活跃的微生物生物量有利于残体量的积累。另一方面,添加N可以增加有毒金属(如铝)的渗透势和有效性,抑制微生物呼吸,减少微生物合成代谢产物分解,从而增加微生物氨基糖的积累。但是,我们发现N添加对总氨基糖的正向影响较小,尽管N添加显著提高了GluN、MurN和GalN的含量。这可能与生态系统类型引起的混杂效应有关,因为N之外的添加增加了农田中总氨基糖的含量(图 2a),而它对森林中总氨基糖有轻微的负面影响(图 3a)

2. 生态系统类型、N添加组合、N添加速率和N添加持续时间对氨基糖的影响

我们发现,N添加对氨基糖的影响取决于生态系统类型,其中N添加增加了农田中所有个体和总氨基糖的含量,而在森林中,它只增加了MurN的含量。农田和森林中氨基糖对N添加的不同反应可能是由于这两种生态系统类型在N添加组合、N添加速率和N添加持续时间上的差异。事实上,我们的结果表明,N添加对氨基糖的积极影响(即NPK添加,高N添加率(>150 kg N ha−1 yr−1)和长期N添加(>10年))都来自农田,而不是森林(表S1,图2,图3)。

在农田生态系统中,N添加对氨基糖的影响取决于N添加组合、N添加速率和N添加持续时间。具体来说,只有NPK添加,高N添加率(>150 kg N ha−1 yr−1)和长期施N(>10年)增加了所有单糖和总氨基糖的含量(图2a-d)。对于NPK添加对氨基糖含量的积极影响,一个可能的解释是N添加结合P和K,可能最大程度地缓解了对植物生长的营养限制,因此可能最大程度地增加了基质可用性(例如,根系分泌物、凋落物输入、TN和SOC含量),这有利于微生物生长和微生物衍生成分的生产。长期N沉降下真菌和细菌的增长进一步表明,N沉降下,氨基糖的反应可能需要很长时间来表达,可能是由于微生物残留的平均停留时间较长。

在森林生态系统中,N添加的总体效应增加了细菌MurN,而对其他氨基糖几乎没有影响。我们发现,单独添加N会增加细菌MurN的含量(图3c)。与农田相比,森林等自然生态系统中的微生物可能更受N的约束,因此森林中的微生物可能对N的添加更敏感。此外,细菌的C/N往往低于真菌,预计对N的需求量也会更高。N的添加通常会导致微生物群落从真菌向细菌为主的转变,这可能会增加细菌代谢残体的产生,从而增加细菌MurN的含量。与农田相似,N的添加对氨基糖的影响也取决于N是单独添加还是与磷结合添加。与单独添加N相比,添加NP降低了真菌GluN和总氨基糖的含量,有两种可能的解释:首先,添加NP可以缓解微生物的磷限制,并将营养限制从磷限制转变为C限制,微生物可以加速C源(氨基糖)的分解,以补偿微生物的C需求,从而降低氨基糖含量。其次,添加NP会增加了N-乙酰氨基葡萄糖苷酶(NAG)的活性,这可以有效分解微生物残留物,从而降低微生物残留物的含量。

结论

两种生态系统类型的微生物对N的反应不同。在农田中,N的添加增加了土壤中真菌GluN和细菌MurN和GalN以及总氨基糖的含量,而在森林中,N的添加只会增加MurN的含量。总的来说,我们揭示了在农田生态系统中,长期高速率的N添加可以增加微生物残体量,特别是当N与磷和钾一起施用时,这可能会因此加强微生物源C的固存。

原文网络连接:
https://doi.org/10.1016/j.soilbio.2021.108500



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 06 - 17
    文献解读原 名:Saline-alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon译 名:盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量期 刊:Science BulletinIF:18.9发表日期:2024.5.18第一作者:Lin Chen01摘要盐碱地是应对全球气候变化和保障粮食安全的重要耕地储备资源,部分原因是它可以储存大量的碳(C)。目前尚不清楚盐碱土地复垦(将盐碱土地转化为耕地)如何影响土壤碳储存。本研究结果表明,与盐碱地相比,盐碱地复垦显著增加了植物来源的碳积累和植物来源的碳与微生物来源的碳比率,导致植物源碳成为SOC储量的主要贡献者,POC封存和MAOC封存分别与盐碱复垦引起的植物和微生物来源的碳积累密切相关,即盐碱地复垦通过优先促进植物来源的碳积累来增加表层土壤中的碳储存量。02引言土壤盐碱化使全球土壤(0-30cm)SOC储量减少了3.47t ha−1。利用土壤修复技术可以有效地逆转这一现象。在农业生态系统中,微生物残体(特别是真菌残体)优先聚集土壤的POC部分。植物和微生物源碳与POC和MAOC含量之间的关系以及植物和微生物来源的碳对盐碱条件下SOC储存的贡献知之甚少。两个公认的生物标志物(木质素酚和氨基糖)已被广泛用于估计植物衍生木质素残体和微生物残体对SOC库的贡献。因此,我们分别使用木质素酚和氨基糖作为植物和微生物残体碳的表征。本研究的目的是(i)量化盐碱土地复垦对表层土壤碳储量的影响,确定影响碳储量的关键因素;(ii)评估植物和微生物来源的碳与POC和MAOC池之间的关系,以及植物和微生物来源的碳对中国主要盐碱区SOC储存的贡献。盐碱地复垦对中国主要盐碱区...
  • 点击次数: 0
    2024 - 05 - 27
  • 点击次数: 0
    2024 - 05 - 20
    文献解读原名:Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate译名:通过13C标记光合产物的追踪,禁牧通过根源碳的微生物残体增加了土壤有机碳期刊:Biology and Fertility of SoilsIF:6.5/Q1发表日期:5 March 2024第一作者:瞿晴01摘要背景:草原储存了大量的碳,然而,禁牧后土壤碳固存的潜在机制尚不清楚。本研究旨在阐明温带草原在长期禁牧后(~40年) ,植物和微生物残体对土壤有机碳(SOC)贡献的驱动因素。方法:现场进行了13C-CO2原位标记实验,并结合生物标记物追踪植物-土壤系统中的13C,以评估植物对土壤的碳输入。结果:长期禁牧提高了植物和土壤碳库包括地上生物量、地下生物量、微生物生物量和残体;且禁牧草地新输入光合碳在植物和土壤系统中的分配量高于放牧草地,但在土壤CO2中的分配量低于放牧草地。新输入的光合碳在土壤和微生物量中的分配量与根系中光合碳的分配量呈正相关关系。与放牧相比,禁牧提高了草地土壤有机碳含量约2倍,但木质素酚对土壤有机碳的贡献甚微(0.8%),而真菌残体碳的积累是导致土壤有机碳含量增加的主要因素。结论:受矿物颗粒保护的微生物残体碳是导致禁牧草地土壤有机碳含量高于放牧草地的主要因素。总之,禁牧不仅增加了地上生物量,也增加根系生物量和根际沉积,导致微生物生物量和残体的形成,在矿物基质的保护作用在土壤中长期稳定存在。禁牧条件下,微生物残体特别是真菌残体对SOC的积累贡献大于木质素酚。02主要结果图1 放牧和禁牧样地地植物-土壤-微生物系统的碳储量。(a)地上部分碳库;(b)根碳库;(c)土壤有机碳库(0−25c...
  • 点击次数: 0
    2024 - 05 - 17
    文献解读原名:The soil microbiome governs the response of microbial respiration to warming across the globe译名:土壤微生物群落主导了微生物呼吸对全球变暖的响应期刊:Nature Climate Change IF:30.7发布时间:2023.12第一作者:Tadeo Sáez-Sandino01摘要土壤微生物呼吸对变暖的敏感性(Q10)仍然是预测土壤向大气碳排放的一个主要不确定来源,因为驱动各生态系统Q10模式的因素是相互独立评估的。本研究采用了来自各大洲和主要生物群落的332个地点的土壤,同时评估了全球Q10模式的主要驱动因素。与生化难分解性、矿物质保护、底物数量和环境因素相比,土壤微生物群落(即微生物生物量和细菌分类群)解释了Q10值变化中的最大部分。提供了确凿的证据表明土壤微生物群落在很大程度上主导了土壤异养呼吸对变暖的响应,因此在评估陆地碳—气候反馈时需要明确考虑这一因素。02研究背景土壤碳(C)通过土壤异养群落的呼吸释放到大气中是导致大气CO2增加的基本途径。土壤呼吸每年释放的二氧化碳大约是人为排放的五倍,这在很大程度上决定了陆地生态系统是碳源还是碳汇。土壤异养呼吸的温度敏感性(即土壤微生物呼吸随着温度上升10°C而增加的因素;Q10)是预测陆地C-气候反馈水平的主要不确定性来源。生态系统和生物地球化学模型假设Q10为常数,尽管人们普遍认为Q10随温度等环境条件而变化。然而,决定Q10在大空间尺度上变异性的非生物和生物因素的相对贡献在很大程度上仍然未知。解释Q10模式的主要驱动因素通常考虑土壤微生物群、基质数量、矿物保护、生化抗性和环境因素的影响。首先,土壤微生物组(即微生物生物量、丰富度和群落组成)是有机物分解的最终参与者,并随着气候变暖调...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
微信公众号
Q  Q : 2105984845
地址:中国四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务