028-8525-3068
新闻动态 News
News 行业新闻

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

日期: 2022-03-01
标签:

原名:Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: A global meta-analysis

译名:氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

期刊:Soil Biology and Biochemistry

IF:8.312

发表时间:2021年12月6日

第一作者: Junxi Hu

通讯作者:黄从德

合作作者:Shixing Zhou, Xiong Liu, Feike A. Dijkstra

主要单位:

四川农业大学林学院,长江上游生态林业工程四川省重点实验室,成都;

国家林业和草原局,长江上游森林资源保护与生态安全重点实验室,四川成都;

摘要

人工N输入的增加改变了全球土壤碳储量,但微生物残体(氨基糖)对添加N的土壤碳的贡献尚不清楚。在此,我们对32篇文献进行了meta分析,并评估了N添加对微生物残体量的影响。结果表明,N添加的总体效应显著提高了真菌(葡萄糖胺,GluN)和细菌(胞壁酸,MurN;半乳糖胺,GalN)残体;但对微生物总残体量(总氨基糖)无显著影响。N添加对氨基糖的影响与生态系统类型有关。N添加增加了农田中GluN、MurN、GalN和总氨基糖的含量,而在森林中N添加仅增加了MurN的含量。在农田中,施N对微生物残体含量的影响取决于施N是单独施N还是与磷钾复合施N。其中,施N对细菌MurN、GalN、真菌GluN和总氨基糖含量无显著影响。而添加NPK显著提高了所有个体(GluN、MurN和GalN)和总氨基糖含量。此外,高施N量(>150 kg N ha−1 yr−1)和长期施N量(>10年)显著提高了农田各氨基糖和总氨基糖的含量,这可能是由于高施N量和长期施N刺激了微生物的生长。我们的研究结果表明,N添加增加了农田微生物残体量和森林细菌残体量,为全球持续的人为N输入改善微生物源碳的封存提供了重要信息。

关键词

N添加;微生物残体;土壤有机碳;氨基糖

前言

土壤有机质(Soil organic matter, SOM)是陆地上最大的有机碳(SOC)库,在全球碳C循环中发挥着重要作用。微生物在SOM转化过程有两种关键而又截然不同的作用。一方面,微生物可以通过分解代谢活动分解SOM并释放CO2;另一方面,微生物可以利用植物源C生成微生物产物或将其残体转化为非生命的SOM,从而促进SOM的形成和稳定。氨基糖是微生物残基和植物的组成成分,具体来说,葡萄糖胺(GluN)主要来源于真菌细胞壁的几丁质,胞壁酸(MurN)只存在于细菌的肽聚糖中,而半乳糖胺(GalN)主要由细菌合成。最近使用氨基糖生物标记物的研究表明,微生物残体可能占一半以上SOC,因此,需要对氨基糖进行研究,以提高对涉及微生物的C循环过程的认识。

关于氨基糖对N沉降的响应,目前还没有共识,研究表明,N沉降对氨基糖的影响是正面、负面或中性。这些不一致的模式可能归因于模拟N沉降速率的差异以及真菌和细菌生长所需N的差异。全球N肥的使用深刻影响了微生物群落和残体产量。此外,在大多数农业系统中,也会施用其他养分,如磷(P)和钾(K);在这种情况下,观察到的效应不能仅仅归因于N输入。综上所述,在不同生物群落中,N沉降和N肥施用对土壤微生物残体的影响尚缺乏共识。

基于32篇已发表的研究在内的全球数据集,我们采用荟萃分析方法研究了N沉降或N肥对土壤氨基糖的影响。我们的目标是回答以下问题:(1)不同的氨基糖(GluN、MurN、GalN和总氨基糖)对N添加的响应一致吗? (2)氨基糖对N添加的响应是否取决于P或K的联合添加? (3)氨基糖对N添加的响应是否取决于N添加速率、N添加持续时间和生态系统类型?

主要结果

1. 氨基糖对N添加的响应

在整个数据集中,不同的氨基糖对N的添加有不同的反应。其中,N添加增加了GluN、MurN和GalN的含量,但对总氨基糖含量没有显著影响(图1)。N添加对氨基糖的影响取决于生态系统类型。特别是,N添加增加了农田中GluN、MurN、GalN和总氨基糖的含量(图2),而在森林中,N添加仅增加了MurN的含量(图3)。

在农田生态系统中,N添加效应取决于是否施用其他养分。单独添加N对总氨基糖(Fig. 2a)、GluN (Fig. 2b)、MurN (Fig. 2c)和GalN (Fig. 2d)的含量没有显著影响,但添加NPK显著提高了各氨基酸和总氨基糖的含量(Fig. 2a-d)。此外,N添加对氨基酸含量的影响与N添加速率和时间有关,高N添加速率(>150 kg N ha−1 yr−1)和长期N添加速率(>10年)提高了所有氨基酸和总氨基酸含量(图2a-d)。除高施N量(>150 kg N ha−1 yr−1)对总氨基糖含量无显著影响外(图2a)。在森林生态系统中,N添加对氨基糖的影响取决于是否添加其他营养物质。仅施N对总氨基糖和GluN含量没有显著影响(图3a),但添加NP显著降低了它们的含量(图3a-b)。此外,低施N量(<50 kg N ha−1 yr−1)和短期施N量(<5年)增加了MurN含量(图3c)。

2. 氨基糖的响应与微生物PLFAs、TN、pH、SOC、N添加速率、N添加时间的相关性,以及在MAP、MAT和海拔的变化

GluN自然对数响应比与细菌PLFAs、真菌PLFAs、总PLFAs、pH、SOC、TN和N添加率的自然对数响应比显著正相关,但与海拔、MAP(年均温)、MAT(年均降雨量)和N添加时间的自然对数响应比不显著相关(图4)。MurN自然对数响应比与细菌PLFAs、真菌PLFAs、总PLFAs、pH和SOC的自然对数响应比呈正相关(图5)。GalN自然对数响应比与细菌PLFAs,真菌PLFAs,总PLFAs,PH和N添加率的自然对数响应比呈正相关(图6)。总氨基糖自然对数响应比与细菌PLFAs、真菌PLFAs、总PLFAs、pH、SOC、TN和N添加率的响应均呈显著正相关(图7)。

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图1 N添加对氨基糖的影响

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图2农田生态系统中总氨基糖(a)、GluN(b)、MurN(c)和GalN(d)含量对N添加的加权响应比和95%置信区间

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图3 森林生态系统中总氨基糖(a)、GluN(b)、MurN(c)和GalN(d)含量对N添加的加权响应比和95%置信区间

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图4 GluN的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系等

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图5 MurN的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系等

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图6 GalN的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系

氮添加增加农田微生物残体和森林细菌残体:一项全球荟萃分析

图7 总氨基糖的自然对数响应比ln(RR)与微生物PLFA、TN、pH、SOC的自然对数响应比ln(RR)之间的线性关系等

讨论

1. N添加对氨基糖的总体影响

总的来说,我们的结果表明,N添加显著增加了真菌源GluN和细菌源MurN和GalN的含量(图1)。一方面,我们发现氨基糖的响应与微生物PLFAs的响应呈正相关,这表明,N添加下,氨基糖的增加可能归因于更活跃的微生物生物量有利于残体量的积累。另一方面,添加N可以增加有毒金属(如铝)的渗透势和有效性,抑制微生物呼吸,减少微生物合成代谢产物分解,从而增加微生物氨基糖的积累。但是,我们发现N添加对总氨基糖的正向影响较小,尽管N添加显著提高了GluN、MurN和GalN的含量。这可能与生态系统类型引起的混杂效应有关,因为N之外的添加增加了农田中总氨基糖的含量(图 2a),而它对森林中总氨基糖有轻微的负面影响(图 3a)

2. 生态系统类型、N添加组合、N添加速率和N添加持续时间对氨基糖的影响

我们发现,N添加对氨基糖的影响取决于生态系统类型,其中N添加增加了农田中所有个体和总氨基糖的含量,而在森林中,它只增加了MurN的含量。农田和森林中氨基糖对N添加的不同反应可能是由于这两种生态系统类型在N添加组合、N添加速率和N添加持续时间上的差异。事实上,我们的结果表明,N添加对氨基糖的积极影响(即NPK添加,高N添加率(>150 kg N ha−1 yr−1)和长期N添加(>10年))都来自农田,而不是森林(表S1,图2,图3)。

在农田生态系统中,N添加对氨基糖的影响取决于N添加组合、N添加速率和N添加持续时间。具体来说,只有NPK添加,高N添加率(>150 kg N ha−1 yr−1)和长期施N(>10年)增加了所有单糖和总氨基糖的含量(图2a-d)。对于NPK添加对氨基糖含量的积极影响,一个可能的解释是N添加结合P和K,可能最大程度地缓解了对植物生长的营养限制,因此可能最大程度地增加了基质可用性(例如,根系分泌物、凋落物输入、TN和SOC含量),这有利于微生物生长和微生物衍生成分的生产。长期N沉降下真菌和细菌的增长进一步表明,N沉降下,氨基糖的反应可能需要很长时间来表达,可能是由于微生物残留的平均停留时间较长。

在森林生态系统中,N添加的总体效应增加了细菌MurN,而对其他氨基糖几乎没有影响。我们发现,单独添加N会增加细菌MurN的含量(图3c)。与农田相比,森林等自然生态系统中的微生物可能更受N的约束,因此森林中的微生物可能对N的添加更敏感。此外,细菌的C/N往往低于真菌,预计对N的需求量也会更高。N的添加通常会导致微生物群落从真菌向细菌为主的转变,这可能会增加细菌代谢残体的产生,从而增加细菌MurN的含量。与农田相似,N的添加对氨基糖的影响也取决于N是单独添加还是与磷结合添加。与单独添加N相比,添加NP降低了真菌GluN和总氨基糖的含量,有两种可能的解释:首先,添加NP可以缓解微生物的磷限制,并将营养限制从磷限制转变为C限制,微生物可以加速C源(氨基糖)的分解,以补偿微生物的C需求,从而降低氨基糖含量。其次,添加NP会增加了N-乙酰氨基葡萄糖苷酶(NAG)的活性,这可以有效分解微生物残留物,从而降低微生物残留物的含量。

结论

两种生态系统类型的微生物对N的反应不同。在农田中,N的添加增加了土壤中真菌GluN和细菌MurN和GalN以及总氨基糖的含量,而在森林中,N的添加只会增加MurN的含量。总的来说,我们揭示了在农田生态系统中,长期高速率的N添加可以增加微生物残体量,特别是当N与磷和钾一起施用时,这可能会因此加强微生物源C的固存。

原文网络连接:
https://doi.org/10.1016/j.soilbio.2021.108500



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
  • 点击次数: 0
    2024 - 09 - 10
    本标准规定了去除杂质、风干、烘干、磨碎等制备森林植物及森林枯枝落叶层样品的方法。本标准适用于森林植物及森林枯枝落叶层样品的制备。样品制备流程 1、去除杂质  植物样品,如果是叶子,要用清洁的湿纱布揩擦干净,如果是树皮或根,则将其表面的干土用刷子把它刷净;微量元素分析用的样品须用1~3g/L去垢剂溶液洗涤,再用水淋净。森林枯枝落叶层样品要挑尽混在其间的石砾、土块等非有机物质。 2、风干和烘干  把揩擦干净的植物新鲜样品及森林枯枝落叶层样品放在通风的地方,铺成薄层,并经常翻动使尽快风干,切不可使其霉变,风干后装入布口袋中。在有烘箱的条件下,可把擦干净的植物新鲜样品及森林枯枝落叶层样品松松地放入烘箱中,一般分两步干燥:先将植物新鲜样品在80~90℃鼓风烘箱中烘15~ 30 min(松软组织烘15 min,致密坚实的组织烘30 min),然后降温至65℃,森林枯枝落叶层样品可直接 在65℃烘干。干燥时间须视新鲜样品含水量而定,通常为12~14 h。然后装入布口袋中。 3、磨碎  样品磨碎前需在65℃烘箱中烘到发脆,然后再进行磨碎处理。如果只测定氮、磷、钾、钠、钙、镁,则可用植物粉碎机磨碎,并通过2mm筛孔,然后装于磨口广口瓶中备用。若分析项目除以上内容外,还要测定微量元素,则样品可用不锈钢剪刀剪细或放在研钵中研碎,并通过2 mm尼龙筛孔,然后装入磨口广口瓶中备用。木材试样可用刨子刨成刨花或用刀劈成小块后再用不锈钢剪刀剪细,装于磨口广口瓶中备用。注:1、已发霉的样品不能用来作森林植物的化学分析,因发霉可促进样品内部酶的催化作用,造成有机物质的严重损失。2、制备样品时应防止烟雾和灰尘污染。更多检测相关内容so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 08 - 30
    原名:Characteristics of dissolved black carbon in riverine surface microlayer译名:河流表层中溶解性黑碳的特征期刊:Marine Pollution BulletinIF:5.3发表日期:2023.07第一作者:Vaezzadeh, Vahab 中国科学院广州地球化学研究所有机地球化学国家重点实验室 粤港澳环境污染与控制联合实验室一、背景黑碳(BC)是由生物质和化石燃料不完全燃烧产生的。根据BC的结构和土壤组成,土壤中的BC最终会生物降解并在孔隙水中溶解,从而通过地表径流输送到水生环境中。BC的溶解形式(DBC)通过河流进入海洋,由于其难降解的特性,对地球上的碳循环具有重要意义。先前使用(BPCAs)苯多羧酸方法的研究已经证明了河流和海洋中不同的DBC特征。虽然DBC的河流输出被认为是海洋DBC库的主要贡献者,其速率为27 Tg -1C-1y ,但关于河流DBC的含量和特征(结构和同位素特征)的数据缺乏。表层微层(SML)厚度为1 ~ 1000 μm,是大气和水生环境之间的分界线,与下层相比,具有不同的生物地球化学特性。SML在(可溶性有机碳)DOC及其难熔部分的扩散气水交换中起着重要作用,既是DBC的来源,也是DBC的汇。目前,有机污染物在SML中的富集已经得到了广泛的研究,而空气-水界面的DBC研究一直被忽视。因此,通过对珠江(PR)上、中和下游的SML中DBC含量组成及其同位素的研究弥补河流DBC特征和河口DBC的运输机制的数据的缺失以及有助于更好的理解DBC沿陆-海洋连续体的运输和命运。二、科学问题(1)分析从PR中采集的SML样本中DBC的含量、组成和δ13C特征。(2)将SML中DBC的特征和来源与全球不同水生生态系统的现有文献进行比较。三、材料与方法(1)SML水样采集于2020年10月东...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务