028-8525-3068
新闻动态 News
News 行业新闻

根系性状对不同菌根共生类型的四种针叶树种根系分泌物输入速率的影响

日期: 2021-12-29
标签:

原名Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations

译名根系性状对不同菌根共生类型的四种针叶树种根系分泌物输入速率的影响

期刊Tree Physiology

IF4.196

发表时间2020.04.25

第一作者Maiko Akatsuki


摘要:

植物根系向土壤分泌一系列有机化合物以促进根系周围有机质的降解并提高对入侵植物的化感作用。本研究开发了一种无碳滤纸用于在微小尺度下收集树木细根分泌物,测定了日本寒温带森林中四个分属于两种菌根共生类型的针叶树根系分泌物总碳含量(ECM:外生菌根;AM:丛枝菌根)。还分别对细根单位根重分泌物输入速率与其形态特征(根直径(RD)、比根长(SRL)、比根面积(SRA)、根组织密度(RTD)和化学特征(根氮浓度(RN)、根碳氮比C/N)之间的关系进行了分析。结果显示,对所有树种综合分析单位根重分泌物输入速率与RDSRARTDRN以及C/N显著相关。当对两种菌根共生类型单独分析时,只有ECM类型的树种根系分泌物输入速率RDSRARTDRNC/N显著相关,而AM类型的树种则无显著相关性。我们的结果表明,根系分泌物输入速率与根系形态特征和化学特征之间的关系主要外生菌根(ECM)驱动丛枝菌根(AM)的影响较小这种差异可能是ECM真菌和AM真菌对植物细根定殖的程度和位置不同所引起的。两种菌根共生类型对根系分泌物输入速率与根系性状之间关系的差异影响将有助于了解森林生态系统地下碳分配的潜在机制。


研究背景:

在全球尺度下,森林生态系统向地下分配的碳可占总初级生产力的25-63%,并为陆地生态系统土壤每年贡献约60 Gt碳。但地下碳分配在细根系统中的数量与位置仍是一个开放的问题。通常认为地下碳通量包含根系和菌根的生产量和呼吸消耗,同时根系分泌物也是重要的组成部分。但传统方法无法区分细根、粗根和菌根对生长、呼吸和根系分泌物的相对贡献,这些信息的缺失会阻碍对局部或全球碳循环的评估。因此,阐明植物光合碳在不同根系结构和不同代谢类型之间的分配和周转至关重要。

根系分泌物指由根系向土壤中释放的一系列可溶性有机化合物,主要包括氨基酸、有机酸、糖、酚类化合物以及其它次级代谢物。树木可通过释放根系分泌物促进微生物活性以提高土壤养分有效性。因此阐明根系分泌物输入量的变化规律对于更好地理解根系分泌物在地下C循环中的整体作用非常重要。

细根形态特征和化学特征能够反映特定物种的生态策略并能决定植物对环境因子的响应,最终会对生态系统产生影响。根系性状还能反映植物的养分获取能力与生理活性。细根系统是一个复杂的系统,由不同发育阶段具有不同生理和化学特性的部分组成。

本研究中,我们开发了一种无碳滤纸用于在微小尺度下短时间收集树木细根分泌物的方法,对日本寒温带四个主要树种进行根系分泌物收集,包括两个ECM树种(P. densiflora, L. kaempferi)和两个AM树种(C. japonicaC. obtusa)。基于不同菌根共生类型的树木具有不同的养分经济这一观点,我们的研究主要关注:1.细根形态特征(RD, SRL, SRA, RTD)和化学特征(RN, C/N)对细根分泌物输入速率的影响;2.不同菌根共生类型如何影响细根性状与细根分泌物之间的关系。


主要结果:

1. 不同物种的根系分泌物输入速率

尽管对每个树种进行了30个根系分泌物收集重复,但由于碳氮分析仪器的最低检测阈值限制,一些样品中未检测到根系分泌物。我们认为这些样品中根系分泌物输入速率为0 mg C g-1 h-1P. densiflora= 3, L. kaempferi= 2, C. japonica= 0, C. obtusa= 1)。因此,对包括零值在内的120个样品进行进一步分析。结果显示,单位根重分泌物输入速率分布在0.00-3.76 mg C g-1 h-1之间(图2)。

2. 细根分泌物输入速率与细根形态特征和化学特征的关系

120个根段的平均直径分布在0.29-2.38 mm之间,根段干物质含量分布在0.003-0.085 g之间。RTD分布在0.12-0.74 g cm-3之间。SRL分布在0.51-53.25 m g-1之间,SRA分布在34.9-747.5 cm2 g-1之间。根氮含量(RN)分布在0.3-2.4%之间,根C/N分布在20.9-151.5之间(图3)。

结果显示,ECM树种的根系分泌物输入速率与RDP < 0.01)、RTDP < 0.01)以及C/NP < 0.01)显著负相关,与SRLP < 0.05)、SRAP < 0.01)以及RNP < 0.01)正相关,AM树种则无此相关性(P > 0.05)。对两种菌根共生类型树种合并分析,结果表明除SRA= 0.06)外,其余指标均与根系分泌物输入速率显著正相关。(图2,表1

 1 四个树种、ECM树种和AM树种的根系分泌物和根系性状之间的回归分析。粗体P表示具有显著相关性

 根系性状对不同菌根共生类型的四种针叶树种根系分泌物输入速率的影响

 根系性状对不同菌根共生类型的四种针叶树种根系分泌物输入速率的影响

 2 根系分泌物输入速率与(aRD;(bRTDg cm-3);(cSRLm g-1);(dSRAcm2 g-1)的关系。黑色线条表示所有物种综合分析的相关性。蓝色虚线表示AM树种无显著相关性。红色实线表示ECM树种具有显著相关性。

根系性状对不同菌根共生类型的四种针叶树种根系分泌物输入速率的影响 

 3 根系分泌物输入速率与(aRN;(bC/N的关系。黑色线条表示所有物种综合分析的相关性。蓝色虚线表示AM树种无显著相关性。红色实线表示ECM树种具有显著相关性。

 

结论:

1. 细根形态特征对细根分泌物输入速率的影响

细根直径被认为是影响原位收集根系分泌物输入速率的重要因素。本研究中,所有物种的细根分泌物输入速率都随着细根直径的降低而升高。这种相关性反映了根系生理功能的变化,即吸收根向运输根的转变。与粗根相比,直径较小的根系通常具有较高的SRL、较低的RTD、较高的N浓度和较短的寿命,具有更的水分和养分获取能力。而直径较粗的根通常具有较高的缩合类单宁含量、根C/N、更发达的次生壁并伴随着木质素和苏木素的沉积,这些因素导致粗根的分泌物输入速率较低。

2. 细根化学特征对细根分泌物输入速率的影响

我们的研究结果显示细根分泌物输入速率与RN正相关而与根C/N负相关,这与以往的研究一致,但我们的结果也表明在AM树种中无显著相关性。具有较高N含量的根细胞内通常含有更多的储存N和蛋白质,这些物质细胞周转和修复活动紧密相关,包括呼吸、养分吸收物质运输等。Sun et al. (2017) 报道了根系分泌物与根N含量之间的正相关关系,认为是根系分泌物输入增加促进根系对土壤N的吸收从而增加根N含量。

3. 菌根真菌对细根分泌物和细根直径的影响

本研究表明,细根直径与细根分泌物之间的关系强烈地由ECM菌根所驱动,而非AM菌根。这一结果可能与ECM真菌AM真菌在细根中定殖的程度和位置有关。ECM树种的低级根序通常具有较高的菌根定殖率,而在AM树种中,较细的根通常不利于AM真菌的定殖。许多研究表明,AM真菌的定殖率随根系直径增加而升高。假设菌根定殖率能够影响细根分泌物输入速率,则AM真菌定殖率较高的粗根应该具有较高的细根分泌物输入速率,从而表现出与ECM树种相反的趋势。事实上,本研究中AM树种C. japonica细根(直径 < 0.5 mm)的分泌物输入速率低于较粗的根(直径0.5 - 1.0 mm)。但不足的是,本研究并未评估菌根定殖率与细根分泌物之间的关系。

4 细根分泌物与植物养分获取策略的关系

此前研究表明,根系分泌物向根际提供富含能量的含碳化合物,促进微生物对土壤有机质的分解,提高了根际的养分含量从而有助于植物生长。我们的研究表明,直径较小的根向根际释放更多的含碳化合物,并通过优化其土壤勘探效率以获取必要的养分资源,利用根际激发效应形成根际富养分区域

我们的研究还表明,沿细根分级梯度,植物细根分泌物输入速率呈现一定的变化趋势。此外,菌根定殖率随细根直径变化而改变,会诱导植物获取养分和水分策略的改变,从而进一步影响细根分泌物输入速率。因此确定根系性状对根系分泌率的影响,有必要将菌根共生类型视为一个重要影响因素。不同菌根共生类型对植物资源获取策略具有不同的影响,从而导致ECM树种和AM树种之间差异的养分获取策略。

5 总结

综上,我们开发了一种无碳滤纸用于在微小尺度下收集树木细根分泌物的方法,可用于更精准地收集短时间内不同根级的分泌物,对于解释植物地下碳分配的时空分布格局具有重要意义。我们还证实了菌根共生类型对细根分泌物输入速率和根系性状之间关系的影响差异,但菌根对植物细根分泌物的具体影响还尚未阐明。需要进一步的研究来区分与根系分泌物相关的因子和与菌根类型相关的因子,以阐明基于细根生理和形态特征的碳分配策略。



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务