原名:Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations
译名:根系性状对不同菌根共生类型的四种针叶树种根系分泌物输入速率的影响
期刊:Tree Physiology
IF:4.196
发表时间:2020.04.25
第一作者:Maiko Akatsuki
摘要:
植物根系向土壤分泌一系列有机化合物以促进根系周围有机质的降解并提高对入侵植物的化感作用。本研究开发了一种无碳滤纸用于在微小尺度下收集树木细根分泌物,测定了日本寒温带森林中四个分别属于两种菌根共生类型的针叶树的根系分泌物总碳含量(ECM:外生菌根;AM:丛枝菌根)。还分别对细根单位根重分泌物输入速率与其形态特征(根直径(RD)、比根长(SRL)、比根面积(SRA)、根组织密度(RTD))和化学特征(根氮浓度(RN)、根碳氮比C/N))之间的关系进行了分析。结果显示,当对所有树种综合分析时,单位根重分泌物输入速率与RD、SRA、RTD、RN以及C/N显著相关。当对两种菌根共生类型单独分析时,只有ECM类型的树种根系分泌物输入速率与RD、SRA、RTD、RN及C/N显著相关,而AM类型的树种则无显著相关性。我们的结果表明,根系分泌物输入速率与根系形态特征和化学特征之间的关系主要由外生菌根(ECM)驱动而丛枝菌根(AM)的影响较小。这种差异可能是ECM真菌和AM真菌对植物细根定殖的程度和位置不同所引起的。两种菌根共生类型对根系分泌物输入速率与根系性状之间关系的差异影响将有助于了解森林生态系统地下碳分配的潜在机制。
研究背景:
在全球尺度下,森林生态系统向地下分配的碳可占总初级生产力的25-63%,并为陆地生态系统土壤每年贡献约60 Gt碳。但地下碳分配在细根系统中的数量与位置仍是一个开放的问题。通常认为地下碳通量包含根系和菌根的生产量和呼吸消耗,同时根系分泌物也是重要的组成部分。但传统方法无法区分细根、粗根和菌根对生长、呼吸和根系分泌物的相对贡献,这些信息的缺失会阻碍对局部或全球碳循环的评估。因此,阐明植物光合碳在不同根系结构和不同代谢类型之间的分配和周转至关重要。
根系分泌物指由根系向土壤中释放的一系列可溶性有机化合物,主要包括氨基酸、有机酸、糖、酚类化合物以及其它次级代谢物。树木可通过释放根系分泌物促进微生物活性以提高土壤养分有效性。因此阐明根系分泌物输入量的变化规律对于更好地理解根系分泌物在地下C循环中的整体作用非常重要。
细根形态特征和化学特征能够反映特定物种的生态策略并能决定植物对环境因子的响应,最终会对生态系统产生影响。根系性状还能反映植物的养分获取能力与生理活性。细根系统是一个复杂的系统,由不同发育阶段具有不同生理和化学特性的部分组成。
本研究中,我们开发了一种无碳滤纸用于在微小尺度下短时间收集树木细根分泌物的方法,对日本寒温带四个主要树种进行根系分泌物收集,包括两个ECM树种(P. densiflora, L. kaempferi)和两个AM树种(C. japonica, C. obtusa)。基于不同菌根共生类型的树木具有不同的养分经济这一观点,我们的研究主要关注:1.细根形态特征(RD, SRL, SRA, RTD)和化学特征(RN, C/N)对细根分泌物输入速率的影响;2.不同菌根共生类型如何影响细根性状与细根分泌物之间的关系。
主要结果:
1. 不同物种的根系分泌物输入速率
尽管对每个树种进行了30个根系分泌物收集重复,但由于碳氮分析仪器的最低检测阈值限制,一些样品中未检测到根系分泌物。我们认为这些样品中根系分泌物输入速率为0 mg C g-1 h-1(P. densiflora: n = 3, L. kaempferi: n = 2, C. japonica: n = 0, C. obtusa: n = 1)。因此,对包括零值在内的120个样品进行进一步分析。结果显示,单位根重分泌物输入速率分布在0.00-3.76 mg C g-1 h-1之间(图2)。
2. 细根分泌物输入速率与细根形态特征和化学特征的关系
120个根段的平均直径分布在0.29-2.38 mm之间,根段干物质含量分布在0.003-0.085 g之间。RTD分布在0.12-0.74 g cm-3之间。SRL分布在0.51-53.25 m g-1之间,SRA分布在34.9-747.5 cm2 g-1之间。根氮含量(RN)分布在0.3-2.4%之间,根C/N分布在20.9-151.5之间(图3)。
结果显示,ECM树种的根系分泌物输入速率与RD(P < 0.01)、RTD(P < 0.01)以及C/N(P < 0.01)显著负相关,与SRL(P < 0.05)、SRA(P < 0.01)以及RN(P < 0.01)正相关,而AM树种则无此相关性(P > 0.05)。对两种菌根共生类型树种合并分析,结果表明除SRA(P = 0.06)外,其余指标均与根系分泌物输入速率显著正相关。(图2,表1)
表 1 四个树种、ECM树种和AM树种的根系分泌物和根系性状之间的回归分析。粗体P表示具有显著相关性
图 2 根系分泌物输入速率与(a)RD;(b)RTD(g cm-3);(c)SRL(m g-1);(d)SRA(cm2 g-1)的关系。黑色线条表示所有物种综合分析的相关性。蓝色虚线表示AM树种无显著相关性。红色实线表示ECM树种具有显著相关性。
图 3 根系分泌物输入速率与(a)RN;(b)C/N的关系。黑色线条表示所有物种综合分析的相关性。蓝色虚线表示AM树种无显著相关性。红色实线表示ECM树种具有显著相关性。
结论:
1. 细根形态特征对细根分泌物输入速率的影响
细根直径被认为是影响原位收集根系分泌物输入速率的重要因素。本研究中,所有物种的细根分泌物输入速率都随着细根直径的降低而升高。这种相关性反映了根系生理功能的变化,即吸收根向运输根的转变。与粗根相比,直径较小的根系通常具有较高的SRL、较低的RTD、较高的N浓度和较短的寿命,具有更强的水分和养分获取能力。而直径较粗的根通常具有较高的缩合类单宁含量、根C/N、更发达的次生壁并伴随着木质素和苏木素的沉积,这些因素导致粗根的分泌物输入速率较低。
2. 细根化学特征对细根分泌物输入速率的影响
我们的研究结果显示细根分泌物输入速率与RN正相关而与根C/N负相关,这与以往的研究一致,但我们的结果也表明在AM树种中无显著相关性。具有较高N含量的根细胞内通常含有更多的储存N和蛋白质,这些物质与细胞周转和修复活动紧密相关,包括呼吸、养分吸收和物质运输等。Sun et al. (2017) 报道了根系分泌物与根N含量之间的正相关关系,认为是根系分泌物输入增加促进根系对土壤N的吸收从而增加根N含量。
3. 菌根真菌对细根分泌物和细根直径的影响
本研究表明,细根直径与细根分泌物之间的关系强烈地由ECM菌根所驱动,而非AM菌根。这一结果可能与ECM真菌和AM真菌在细根中定殖的程度和位置有关。ECM树种的低级根序通常具有较高的菌根定殖率,而在AM树种中,较细的根通常不利于AM真菌的定殖。许多研究表明,AM真菌的定殖率随根系直径增加而升高。假设菌根定殖率能够影响细根分泌物输入速率,则AM真菌定殖率较高的粗根应该具有较高的细根分泌物输入速率,从而表现出与ECM树种相反的趋势。事实上,本研究中AM树种C. japonica细根(直径 < 0.5 mm)的分泌物输入速率低于较粗的根(直径0.5 - 1.0 mm)。但不足的是,本研究并未评估菌根定殖率与细根分泌物之间的关系。
4 细根分泌物与植物养分获取策略的关系
此前研究表明,根系分泌物向根际提供富含能量的含碳化合物,促进微生物对土壤有机质的分解,提高了根际的养分含量,从而有助于植物生长。我们的研究表明,直径较小的根向根际释放更多的含碳化合物,并通过优化其土壤勘探效率以获取必要的养分资源,利用根际激发效应形成根际富养分区域。
我们的研究还表明,沿细根分级梯度,植物细根分泌物输入速率呈现一定的变化趋势。此外,菌根定殖率随细根直径变化而改变,会诱导植物获取养分和水分策略的改变,从而进一步影响细根分泌物输入速率。因此确定根系性状对根系分泌率的影响,有必要将菌根共生类型视为一个重要影响因素。不同菌根共生类型对植物资源获取策略具有不同的影响,从而导致ECM树种和AM树种之间差异的养分获取策略。
5 总结
综上,我们开发了一种无碳滤纸用于在微小尺度下收集树木细根分泌物的方法,可用于更精准地收集短时间内不同根级的分泌物,对于解释植物地下碳分配的时空分布格局具有重要意义。我们还证实了菌根共生类型对细根分泌物输入速率和根系性状之间关系的影响差异,但菌根对植物细根分泌物的具体影响还尚未阐明。需要进一步的研究来区分与根系分泌物相关的因子和与菌根类型相关的因子,以阐明基于细根生理和形态特征的碳分配策略。