028-8525-3068
新闻动态 News
News 行业新闻

碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

日期: 2021-12-08
标签:

原名:Alkaline phosphatase activity mediates soil organic phosphorus

mineralization in a subalpine forest ecosystem.

译名:碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

作者Jiabao Liet al.

期刊:Geoderma

发表时间:2021.06


一、关键词

磷矿化;碱性磷酸酶;酸性磷酸酶; 磷有效性;phoD相关细菌群落。

二、研究主题和背景

1背景:微生物在土壤有机磷矿化中起着至关重要的作用。然而,在亚高山森林中,微生物和环境特征如何介导这一过程仍然是未知的。

2主题:本研究以青藏高原贡嘎山沿海拔梯度的暗针叶林为研究对象,综合研究了碱性磷酸酶(ALP)和酸性磷酸酶ACP活性对土壤磷有效性的影响,探讨了两种磷酸酶活性的微生物和环境驱动因素。

三、科学问题或科学假说

(1)科学问题:酸性和碱性磷酸酶对土壤P有效性有什么影响?这两种磷酸酶活性的环境和微生物作用机制? 

(2)科学假说:

A. 碱性磷酸酶ALP对亚高山森林土壤中磷的有效性具有重要的调节作用

B. 碱性磷酸酶活性与酸性磷酸酶相似,主要受土壤TN调节,土壤NP也可能影响其ALP的活性。

C.  N:P比驱动的含磷微生物种群有助于碱性磷酸酶活性的变化

四、以往研究和研究现状

在陆地生态系统中,酸性磷酸酶主要来源于植物根系和微生物,碱性磷酸酶主要来源于微生物,因此,ALP被认为是微生物周转的重要驱动因素。一些研究已经在农业生态系统中进行,以阐明酸性磷酸酶活性与NP添加之间的相互作用然而,森林生态系统中碱性磷酸酶活性的研究较少,可能是由于酸性磷酸酶比碱性磷酸酶在酸性条件下的有机磷矿化中起着更重要的作用。但是最近有研究表明,与酸性磷酸酶相比,酸性土中碱性磷酸酶中编码基因个更多,因此了解它们如何调节土壤有机磷矿化,特别是在亚高山森林生态系统中,可以提供微生物群落与磷循环之间的联系农业生态系统中酸性磷酸酶活性的调节因子已进行了许多研究,土壤有机质,土壤成土作用,岩石以及生物气候因子被认为是最重要的驱动因素。

五、材料和方法

A.样地与土壤样品采集与保存:2017年的两个季节(8月和10)分别亚高山森林-贡嘎山于4个海拔高度(2800m3000m3200m3500m)的地点采集了土壤样品主要是冷杉。 在每个海拔梯度,分别选取三棵间距大于15m的树进行根际和非根际土的采样,每个新鲜土壤样品通过2mm筛分,分为两个子样品,其中一个样品储存在4C测量土壤理化性质和磷酸酶活性,另一部分储存在-20C提取DNA

B.土壤理化性质和磷酸酶活性的测定

土壤pHNO3- -NNH4+-NTPAP

C.DNA提取和基因定量

利用PowerSoil®DNA分离技术提取土壤基因组DNA试剂盒(MOBIO, CA, USA),并使用NanoDrop分光光度计评估分离的DNA的质量和数量.

D.phoD基因扩增子测序

利用F733/R1083对引物对phoD基因进行扩增,可获得最高的phoD微生物群落多样性和覆盖度

E.数据分析

采用置换多元方差分析(PERMANOVA)方法,研究了海拔、季节和地理位置(根际和根际体积)对土壤碱性和酸性磷酸酶活性、无机磷含量、磷含量和磷含量的影响。非参数检验用于描述不同季节/时间上海拔和地理位置的差异。主坐标分析(PCoA) 确定所有样品中含有phod的细菌群落结构的变化。采用偏最小二乘路径模型(PLS-PM)进一步揭示了不同因素影响土壤碱性磷酸酶和酸性磷酸酶活性及磷有效性的可能途径

六、结果

11:土壤有效无机磷含量和碱性、酸性磷酸酶活性10月的土壤无机有效磷含量显著高于8月,最高含量出现在海拔3000m处;相反,土壤酸性和碱性磷酸酶活性在8月更高,相对较高含量出现在海拔2800m3000m。普遍来说,根际的无机有效磷,酸性和碱性磷酸酶活性都高于非根际土壤。

碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

2)图2、图3:微生物丰度、多样性及组成。phoDphoC基因的丰度8月显著高于10月,但在根际和非根际中无显著差异。phoD细菌群落的结构在根际土和非根际土中也无显著差异。

碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

(3)4:无机磷含量与环境及微生物性状的关系。8月,无机磷与碱性磷酸酶活性之间存在显著的正相关关系(p<0.05),而有效无机磷含量与酸性磷酸酶在两个季节上均无显著相关关系。与无机磷含量不同的是,土壤碱性磷酸酶和酸性磷酸酶与TNTC显著相关(p < 0.001)

碱性磷酸酶活性调控亚高山森林生态系统土壤有机磷矿化

七、讨论

1碱性磷酸酶活性对土壤磷有效性具有重要调节作用:虽然酸性磷酸酶的活性是碱性磷酸酶活性的1-2倍,但phoD基因丰度比phoC基因丰度高1-2个数量级。因此,假设在亚高山森林中,酸性磷酸酶可以促进有机磷矿化,无论土壤无机磷储量是否低,而碱性磷酸酶则可以释放无机磷。从而为微生物和植物提供磷提供了另一种途径。

2碱性磷酸酶活性与相对较少的属紧密相关,而与phoD基因的丰度无关N:P比驱动的含磷微生物种群对碱性磷酸酶活性的变化有一定的影响,但是,含磷细菌群落组成与碱性磷酸酶活性无显著相关性。因此,这倾向于表明磷酸酶活性可能与细菌群落组成没有直接关系。并发现碱性磷酸酶的合成仅在相对少数的phod细菌中被高度诱导磷酸酶活性与C:N呈负相关关系,表明磷酸酶可为植物和微生物提供额外的N源。

八、总结与思考

目前关于土壤有机磷矿化调控机制的研究大多局限于农业生态系统,以及磷酸酶活性、NP添加之间的相互作用。研究重点关注亚高山森林生态系统土壤磷矿化的环境和微生物驱动因素结果表明,碱性磷酸酶活性较酸性磷酸酶活性更好地解释了土壤无机有效磷含量的海拔和季节动态,说明碱性磷酸酶活性在山地森林生态系统土壤无机磷释放中起着关键作用。颠覆了传统观点认为的酸性磷酸酶在有机磷矿化过程中较碱性磷酸酶起着更为重要的作用。此外,土壤TCTN对这两种磷酸酶活性起着重要的作用,碱性磷酸酶活性受土壤N:P比例的调节,非酸性磷酸酶,这可能是由于ALP编码基因的转录受磷饥饿反应调节的控制。通过整合微生物群落数据集,我们的结果显示,尽管phoD基因的丰度和多样性不高,但碱性磷酸酶活性与相对较少的含phoD细菌密切相关。本研究重点关注根际和非根际土壤磷酸酶活性以及与NP等的关系,但是对于海拔梯度上酸性和碱性磷酸酶的差异及其与微生物群落等的相互作用关系还有待研究。

  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 05 - 27
  • 点击次数: 0
    2024 - 05 - 20
    文献解读原名:Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate译名:通过13C标记光合产物的追踪,禁牧通过根源碳的微生物残体增加了土壤有机碳期刊:Biology and Fertility of SoilsIF:6.5/Q1发表日期:5 March 2024第一作者:瞿晴01摘要背景:草原储存了大量的碳,然而,禁牧后土壤碳固存的潜在机制尚不清楚。本研究旨在阐明温带草原在长期禁牧后(~40年) ,植物和微生物残体对土壤有机碳(SOC)贡献的驱动因素。方法:现场进行了13C-CO2原位标记实验,并结合生物标记物追踪植物-土壤系统中的13C,以评估植物对土壤的碳输入。结果:长期禁牧提高了植物和土壤碳库包括地上生物量、地下生物量、微生物生物量和残体;且禁牧草地新输入光合碳在植物和土壤系统中的分配量高于放牧草地,但在土壤CO2中的分配量低于放牧草地。新输入的光合碳在土壤和微生物量中的分配量与根系中光合碳的分配量呈正相关关系。与放牧相比,禁牧提高了草地土壤有机碳含量约2倍,但木质素酚对土壤有机碳的贡献甚微(0.8%),而真菌残体碳的积累是导致土壤有机碳含量增加的主要因素。结论:受矿物颗粒保护的微生物残体碳是导致禁牧草地土壤有机碳含量高于放牧草地的主要因素。总之,禁牧不仅增加了地上生物量,也增加根系生物量和根际沉积,导致微生物生物量和残体的形成,在矿物基质的保护作用在土壤中长期稳定存在。禁牧条件下,微生物残体特别是真菌残体对SOC的积累贡献大于木质素酚。02主要结果图1 放牧和禁牧样地地植物-土壤-微生物系统的碳储量。(a)地上部分碳库;(b)根碳库;(c)土壤有机碳库(0−25c...
  • 点击次数: 0
    2024 - 05 - 17
    文献解读原名:The soil microbiome governs the response of microbial respiration to warming across the globe译名:土壤微生物群落主导了微生物呼吸对全球变暖的响应期刊:Nature Climate Change IF:30.7发布时间:2023.12第一作者:Tadeo Sáez-Sandino01摘要土壤微生物呼吸对变暖的敏感性(Q10)仍然是预测土壤向大气碳排放的一个主要不确定来源,因为驱动各生态系统Q10模式的因素是相互独立评估的。本研究采用了来自各大洲和主要生物群落的332个地点的土壤,同时评估了全球Q10模式的主要驱动因素。与生化难分解性、矿物质保护、底物数量和环境因素相比,土壤微生物群落(即微生物生物量和细菌分类群)解释了Q10值变化中的最大部分。提供了确凿的证据表明土壤微生物群落在很大程度上主导了土壤异养呼吸对变暖的响应,因此在评估陆地碳—气候反馈时需要明确考虑这一因素。02研究背景土壤碳(C)通过土壤异养群落的呼吸释放到大气中是导致大气CO2增加的基本途径。土壤呼吸每年释放的二氧化碳大约是人为排放的五倍,这在很大程度上决定了陆地生态系统是碳源还是碳汇。土壤异养呼吸的温度敏感性(即土壤微生物呼吸随着温度上升10°C而增加的因素;Q10)是预测陆地C-气候反馈水平的主要不确定性来源。生态系统和生物地球化学模型假设Q10为常数,尽管人们普遍认为Q10随温度等环境条件而变化。然而,决定Q10在大空间尺度上变异性的非生物和生物因素的相对贡献在很大程度上仍然未知。解释Q10模式的主要驱动因素通常考虑土壤微生物群、基质数量、矿物保护、生化抗性和环境因素的影响。首先,土壤微生物组(即微生物生物量、丰富度和群落组成)是有机物分解的最终参与者,并随着气候变暖调...
  • 点击次数: 0
    2024 - 05 - 11
    2024年5月7日,首届“土壤序列养分循环及其对生态恢复的启示”国际会议在四川省成都市顺利召开。会议由中国科学院、水利部成都山地灾害与环境研究所及国内外多个研究机构和部门联合发起,成都栢晖生物科技有限公司作为独家赞助单位参与此次会议。会议主题包括但不限于:土壤序列上风化和成土过程Weathering and pedogenic processes along chronosequences土壤序列上成土和原生演替过程中养分活化的生物地球化学过程Biogeochemical processes of nutrient mobilization during pedogenesis and primary succession along chronosequences土壤序列上植物养分获取和利用机制Mechanisms of plant acquisition and utilization of nutrients along chronosequences原生演替过程中植物-微生物互作对养分循环的影响Plant-microorganism interaction in nutrient cycling during primary succession土壤序列上养分循环理论对恶劣环境下地灾体生态恢复的启示Inspiration of knowledge on nutrient cycling along chronosequences for ecological restoration on harsh debris environment in geological hazard areas关于栢晖栢晖生物成立于2014 年,公司致力于为生态、农业、林业等科学研究领域提供专业的检验检测服务。公司拥有成熟、完善的实验室管理体系以及强大的实验技术团队。聘请来自中国科学院、...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
微信公众号
Q  Q : 2105984845
地址:中国四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务