028-8525-3068
新闻动态 News
News 行业新闻

文献分享 | 干旱和氮添加影响根际碳分配

日期: 2021-12-01
标签:

标题:Carbon allocation to the rhizosphere is affected by drought and nitrogen addition

译名:干旱和氮添加影响根际碳分配

期刊:Science of The Total Environment

IF:6.256

发表时间:2021年7月9日

第一作者: Ruzhen Wang

通讯作者:Feike A. Dijkstra


论文id:https://doi.org/10.1111/1365-2745.13746

摘要

植物光合产物碳(C)分配至地下后,可与菌根真菌交换养分,也可作为根际沉积进入土壤,通过微生物矿化有机质(SOM)为植物提供养分。然而,水分和氮(N)有效性如何影响根际C分配(包括丛枝菌根真菌,共生体和根际沉积物)仍不明确。本研究使用13CO2脉冲标记实验来评估澳大利亚草地干旱和N添加对地下土壤和根的13C分配的影响,并检验了他们与丛枝菌根(AMF)定殖(Mycorrhizal colonization)间的关系。还验证了AMF与前期研究报道的根呼吸和根际沉积物分解之间的关系。结果发现,干旱均降低了分配至土壤和根系的过量13C的绝对量,可能是由光合C固定较少导致。相反地,干旱导致更多比例的过量13C分配到了土壤,而不是根系生物量中,说明更多的C分配到根际沉积和用于AMF生长与菌丝延伸。然而,与干旱不添加N 的处理相比,N添加与干旱的效应相反。具体地,N添加导致更大比例的过量C分配到根系,而更少分配于土壤,这与更高的土壤N和磷(P)有效性,根生物量和根尖数增加一致。说明养分限制的缓解促进了植物将相对多的C投资于根系生长和根系形状调节,而较少的C投资于根际沉积和菌根共生。菌根定殖与根沉积分解速率呈负相关,而与根系生物量和根系呼吸中过量的13C均呈正相关,表明菌根共生与根际沉积之间可能存在C分配的权衡。综上所述,该草地的地下C分配可以通过菌根定殖介导,受水分和养分有效性的强烈影响。


背景

超30%的光合固定C可能被分配至地下用于植物养分获取的C投资,尽管这因树种,生长阶段和环境条件而异。地下C投资可与菌根真菌交换养分,但也能通过细根沉积在根际,被称为根际沉积(包括活根,根共生体,衰老和死亡根系流失的化合物),可能诱导微生物矿化并释放封锁在SOM中的养分。C向菌根的分配是植物通过菌丝网络维持养分吸收和在干旱或养分限制等胁迫环境下生存十分重要的过程,其中,AMF是最常见的类型。根际沉积通过促进土壤微生物周转和SOM分解导致养分活化。因此,菌根共生和根际沉积均消耗了光合固定C,并且越来越多的证据表明这两个基本过程相互作用影响了地下C分配。根际沉积可以通过减少菌丝延伸和根系感染的信号分子增加AMF定殖,或者通过直接固定土壤P减少定殖。而菌根真菌能将光合C直接转移到土壤细菌或者在增加根际净沉积以减少C分配给根系生长。由于这些复杂的相互作用,植物C分配至菌根和根际沉积的过程变得不可预知,并限制了对植物C分配和土壤养分供应之间关系的机理性理解。气候变化导致的干旱被预测将在许多生态系统发生,并导致植物光合作用和生产力下降。由于光合产物较少,在地下易位,干旱还可减少AMF定殖和根沉积物,这需要耗费大量能量,但对植物抗逆和养分获取是必需的。此外,干旱还可以通过降低土壤中养分(尤其是P)在较低土壤水分水平下的可移动性,直接降低植物的养分可利用性。N和P元素广泛制约着大多数陆地生态系统中的植物生长,它们与干旱相互作用,调节植物C向菌根真菌和根际沉积的分配。例如,N添加导致更高的植物光合产物C和根生物量,进而刺激了微生物分解,尽管这也取决于根际沉积物的质量。然而,N添加后加剧P的缺乏,促进菌根定殖,导致更多比例的C分配给菌根真菌,从而提高菌丝延伸的潜力,营养和水分的获取。因此,较高的定殖率和底物C分配,加上升高的菌根组织N浓度,能诱导更高的根呼吸。然而,也有不同的情况,N添加没有消耗C来维持菌根共生而是直接从土壤获取N,从而导致菌根定殖减少。因此,为了优化生长,如果水分和P限制胁迫下C缺乏,植物可以将更多比例的光合C分配给根际沉积或菌根共生。


实验设计

该研究团队开发了一种新的13CO2脉冲标记技术,使之可以从草地完整的植物-土壤核心中将土壤呼吸分离为根系呼吸,根际沉积物分解和SOM分解。在其前期的研究中发现干旱显著减少了根际沉积物的分解,而N添加增加了根系呼吸。该研究进一步探究了干旱和N添加对植物地下光合C分配的影响以及与菌根定殖的关系。


假设

1.干旱降低了由于植物光合作用和生产力降低而分配给根系生物量和土壤的C的绝对量,但促进了AMF定殖,增加了分配至根系呼吸和土壤C的比例,而N添加抵消了干旱效应。

2. AMF定殖与根沉积物分解呈负相关关系,说明AMF在调控地下植物C分配策略中的强大作用,以及在菌根共生与根际沉积物之间C分配的潜在权衡。


结果

结果1:植物生物量、土壤有效养分、菌根定殖及微生物生物量中13C含量

1、干旱降低了植物地上生物量,而N添加则相反。

2、土壤有效N在干旱和N添加处理下均呈增加趋势。

3、N添加降低土壤有效P。AMF定殖率在干旱处理下降低而在N添加处理下增加。

4、微生物生物量中过量的13C与AMF定殖率呈现一致趋势。

文献分享 | 干旱和氮添加影响根际碳分配

S1. 施氮( N )和干旱( D )对( a )脉冲标记后2天的地上生物量、( b )土壤有效N和( c )土壤有效P的影响,脉冲标记后2、4和7天平均取样。

文献分享 | 干旱和氮添加影响根际碳分配

图1. 氮添加(N)和干旱(D)对(A)丛枝菌根真菌(AMF)定殖率和(B)MBC中过量13C(13C-MBC)的影响。


结果2:植物C分配格局

1、干旱导致植物-土壤系统中总的过量13C(包括地上部、根和土壤)显著降低,而N添加具有相反的效应。

2、地上部和根系以及N添加的土壤过量13C随干旱而减少。

3、N添加下植物-土壤系统总过量13C的增加,多是由于地上部13C增加所致。

4、干旱不施N的处理降低了分配给根系的13C比例,增加了分配给土壤的13C比例。

文献分享 | 干旱和氮添加影响根际碳分配

图2. 脉冲标记后第2天,施氮(N)和干旱(D)对地上部、根系和土壤(B)中的绝对量(A)和过量13C比例的影响。


结果3:根系形态

SRL和SRA随着干旱(尤其是无N添加)而降低。干旱增加了LWARD,N处理的干旱效应略显著。干旱在无N添加时有减少根尖数的趋势,但在N添加时显著增加了根尖数。

文献分享 | 干旱和氮添加影响根际碳分配

图3.(A) 干旱(D)和氮(N)条件下的比根长(SRL),(B)比根面积(SRA),(C)长度加权平均根径(LWARD)和(D)根尖数。


结果4:菌根定殖与各变量的相关关系

菌根定殖与不干旱时的根沉积分解速率呈负相关,但与根系呼吸呈正相关,13C分配到土壤和根系的所有4个处理组合。13C分配到土壤和根系的相对比例呈负相关。菌根定殖与分配给土壤微生物生物量的过量13C的绝对量正相关。

文献分享 | 干旱和氮添加影响根际碳分配

图4. 菌根定殖率与(A)根际沉积分解速率(Rhizo-CO2)、(B)根呼吸速率及(C)土壤和(D)根中绝对过量13C的关系。

文献分享 | 干旱和氮添加影响根际碳分配

图5. 干旱和N添加处理下分配给根系和土壤的C占地下C分配总量的比例。


综上所述,根际碳分配受干旱和氮添加影响。菌根定殖可以强烈地影响植物的C分配策略,与自由生活的微生物合作进行养分获取,并有助于将植物C分配到根系和根系呼吸。

  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 06 - 17
    文献解读原 名:Saline-alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon译 名:盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量期 刊:Science BulletinIF:18.9发表日期:2024.5.18第一作者:Lin Chen01摘要盐碱地是应对全球气候变化和保障粮食安全的重要耕地储备资源,部分原因是它可以储存大量的碳(C)。目前尚不清楚盐碱土地复垦(将盐碱土地转化为耕地)如何影响土壤碳储存。本研究结果表明,与盐碱地相比,盐碱地复垦显著增加了植物来源的碳积累和植物来源的碳与微生物来源的碳比率,导致植物源碳成为SOC储量的主要贡献者,POC封存和MAOC封存分别与盐碱复垦引起的植物和微生物来源的碳积累密切相关,即盐碱地复垦通过优先促进植物来源的碳积累来增加表层土壤中的碳储存量。02引言土壤盐碱化使全球土壤(0-30cm)SOC储量减少了3.47t ha−1。利用土壤修复技术可以有效地逆转这一现象。在农业生态系统中,微生物残体(特别是真菌残体)优先聚集土壤的POC部分。植物和微生物源碳与POC和MAOC含量之间的关系以及植物和微生物来源的碳对盐碱条件下SOC储存的贡献知之甚少。两个公认的生物标志物(木质素酚和氨基糖)已被广泛用于估计植物衍生木质素残体和微生物残体对SOC库的贡献。因此,我们分别使用木质素酚和氨基糖作为植物和微生物残体碳的表征。本研究的目的是(i)量化盐碱土地复垦对表层土壤碳储量的影响,确定影响碳储量的关键因素;(ii)评估植物和微生物来源的碳与POC和MAOC池之间的关系,以及植物和微生物来源的碳对中国主要盐碱区SOC储存的贡献。盐碱地复垦对中国主要盐碱区...
  • 点击次数: 0
    2024 - 05 - 27
  • 点击次数: 0
    2024 - 05 - 20
    文献解读原名:Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate译名:通过13C标记光合产物的追踪,禁牧通过根源碳的微生物残体增加了土壤有机碳期刊:Biology and Fertility of SoilsIF:6.5/Q1发表日期:5 March 2024第一作者:瞿晴01摘要背景:草原储存了大量的碳,然而,禁牧后土壤碳固存的潜在机制尚不清楚。本研究旨在阐明温带草原在长期禁牧后(~40年) ,植物和微生物残体对土壤有机碳(SOC)贡献的驱动因素。方法:现场进行了13C-CO2原位标记实验,并结合生物标记物追踪植物-土壤系统中的13C,以评估植物对土壤的碳输入。结果:长期禁牧提高了植物和土壤碳库包括地上生物量、地下生物量、微生物生物量和残体;且禁牧草地新输入光合碳在植物和土壤系统中的分配量高于放牧草地,但在土壤CO2中的分配量低于放牧草地。新输入的光合碳在土壤和微生物量中的分配量与根系中光合碳的分配量呈正相关关系。与放牧相比,禁牧提高了草地土壤有机碳含量约2倍,但木质素酚对土壤有机碳的贡献甚微(0.8%),而真菌残体碳的积累是导致土壤有机碳含量增加的主要因素。结论:受矿物颗粒保护的微生物残体碳是导致禁牧草地土壤有机碳含量高于放牧草地的主要因素。总之,禁牧不仅增加了地上生物量,也增加根系生物量和根际沉积,导致微生物生物量和残体的形成,在矿物基质的保护作用在土壤中长期稳定存在。禁牧条件下,微生物残体特别是真菌残体对SOC的积累贡献大于木质素酚。02主要结果图1 放牧和禁牧样地地植物-土壤-微生物系统的碳储量。(a)地上部分碳库;(b)根碳库;(c)土壤有机碳库(0−25c...
  • 点击次数: 0
    2024 - 05 - 17
    文献解读原名:The soil microbiome governs the response of microbial respiration to warming across the globe译名:土壤微生物群落主导了微生物呼吸对全球变暖的响应期刊:Nature Climate Change IF:30.7发布时间:2023.12第一作者:Tadeo Sáez-Sandino01摘要土壤微生物呼吸对变暖的敏感性(Q10)仍然是预测土壤向大气碳排放的一个主要不确定来源,因为驱动各生态系统Q10模式的因素是相互独立评估的。本研究采用了来自各大洲和主要生物群落的332个地点的土壤,同时评估了全球Q10模式的主要驱动因素。与生化难分解性、矿物质保护、底物数量和环境因素相比,土壤微生物群落(即微生物生物量和细菌分类群)解释了Q10值变化中的最大部分。提供了确凿的证据表明土壤微生物群落在很大程度上主导了土壤异养呼吸对变暖的响应,因此在评估陆地碳—气候反馈时需要明确考虑这一因素。02研究背景土壤碳(C)通过土壤异养群落的呼吸释放到大气中是导致大气CO2增加的基本途径。土壤呼吸每年释放的二氧化碳大约是人为排放的五倍,这在很大程度上决定了陆地生态系统是碳源还是碳汇。土壤异养呼吸的温度敏感性(即土壤微生物呼吸随着温度上升10°C而增加的因素;Q10)是预测陆地C-气候反馈水平的主要不确定性来源。生态系统和生物地球化学模型假设Q10为常数,尽管人们普遍认为Q10随温度等环境条件而变化。然而,决定Q10在大空间尺度上变异性的非生物和生物因素的相对贡献在很大程度上仍然未知。解释Q10模式的主要驱动因素通常考虑土壤微生物群、基质数量、矿物保护、生化抗性和环境因素的影响。首先,土壤微生物组(即微生物生物量、丰富度和群落组成)是有机物分解的最终参与者,并随着气候变暖调...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
微信公众号
Q  Q : 2105984845
地址:中国四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务