028-8525-3068
新闻动态 News
News 行业新闻

外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

日期: 2021-10-29
标签:
外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应


外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

摘要

植物菌根互作调节了植物氮(N)的限制,并可以为CO2增加对植物生长影响的持续时间和强度提供模型预测信息。在成熟的温带森林中,随着自然土壤养分梯度的增加,红栎(Quercus rubra L.)对CO2增加 (iCO2)的施肥反应呈积极的、但依赖于环境的树木年代学证据。我们通过外生菌根(ECM)真菌N觅食性状相关的宏基因组测量和植物吸收无机氮(IN)和土壤有机质绑定N (N-SOM)的树木年代学模型共同来研究这种异质性响应。在IN有效性较低的土壤条件下,N-SOM可以促进树木生长,ECM真菌群落具有更大的降解SOM和获得N-SOM的基因组潜力。这些树经历了38年的持续CO2施肥。相比之下,植物在IN丰富的土壤中生长,与之共生的ECM真菌群落具有较低的SOM降解能力,iCO2对树木生长并无显著影响。本研究阐明了ECM真菌群落的N觅食性状分布会如何影响树木对N-SOM的获取及后续其对iCO2的生长响应。

研究背景

逐渐升高的CO2刺激了全球范围内的总初级生产力,地球系统模型(ESM)指出这种效应可延续至2070年。虽然全球范围的研究推断出适度的历史施肥效应,但在成熟森林生态系统规模上,CO2增加刺激生产力的证据尚不明确。在成熟森林中进行的CO2富集控制实验表明CO2升高(eCO2)对树木生长存在着正的、适度的和饱和的响应。氮(N)有效性,特别是在成熟的森林被广泛认为制约了树木生长对CO2的响应。

植物氮限制通常与IN的有效性有关,而IN需通过微生物矿化土壤有机质(SOM)转化而成。相比之下,土壤有机质绑定N (N-SOM)被认为是植物无法直接获得的, ESM模型中很少考虑N-SOM的作用。然而,对N-SOM的收收可能是特定植物短期适应IN供给不足的重要途径。植物对N-SOM的吸收取决于外生菌根(ECM)真菌共生体的活性。ECM真菌可能酶降解和非酶降解机制获得N-SOM。尽管ECM群落为植物提供了大部分的N,但ECM群落及其N-觅食特性与植物对iCO2响应之间关系的研究及其缺乏,极大地限制ECM宿主植物生长对iCO2相应的准确预测。

植物与ECM形成互惠共生关系以最大化获取氮和最小化植物碳(C)支出(C投资的N收益)。不同的ECM类群降解SOM的能力差异很大,更强的分解能力需要更多的植物C投资。在IN有效性较低的条件下,选择获取N-SOM可能更加有利。我们推测由于N- SOM和IN都对树木生长有贡献。因此,与具有更强分解潜力的ECM群落共生的树木(即生长在IN贫乏土壤中)的对iCO2的响应最大。相反,树木氮源以IN为主(即生长在IN丰富的土壤中),树木对iCO2的生长效应较小(图1)。本研究旨在,(1)阐明N-SOM对树木生长的贡献;(2)沿着自然土壤IN梯度,量化ECM真菌群落聚集降解性状(CADT);(3)揭示CADT和树木N-SOM获取与树木对iCO2响应的关系

外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

图1. 不同氮(N)形式对树木生长的假设性贡献(红色和橙色线; y-轴)以及树木对历史性CO2 增加(iCO2)的反应。这些响应随无机氮供应速率的变化而变化(净氮矿化速率:x轴)。深蓝色箭头表示iCO2相对化施肥反应(箭头宽度)。利用宏基因组学方法估算了ECM真菌群落组成、形态性状和群落聚集衰变性状(CADT),并假设它们随土壤无机氮有效性的变化而变化。注:假设ECM类群的优势地位在超根根状菌丝和中长距离探索形态上发生了转变。根上的白色斑点表示ECM根尖的相对丰度

主要结果

1)树木年代学模型与植物N吸收

在考虑了其他生长限制因素后,沿着土壤净氮矿化(即IN供应)的梯度,树木年增长率(BAI)是一致的(图2A)。然而,如果在树木生长(BAI)中增加N-SOM这一预测因子后,则观察到生长速率与IN供应之间的关系将被削弱。(图2A中的斜率变小,红色)。我们发现植物生长促进效应与N矿化梯度的拐点出现在0.53±μg IN g-1d-1 (Fig. 2B),BAI和净N矿化率之间存在显著的变化点,变化点左侧的斜率明显比右侧的斜率更弱(更小)。在BAI统计变化点以下的树木生长显著大于仅基于无机氮贡献的预测。在考虑了其他生长限制变量后,我们将这高于预期的生长响应解释为N-SOM对树木生长的假定贡献。

2) 外生菌根群落分析

与模拟BAI对土壤无机氮有效性的响应一致,ECM群落的组成和形态特征也发生了显著变化。这些变化与假设的N-SOM和无机N对树木生长的贡献相一致(图 3)。无机氮有效性低的条件下,ECM群落中Cortinarius占优势(图 3A)。Cortinarius被认为可分泌大量的氧化酶参与N-SOM的获取。相反,在高无机N有效性条件下,Russula占优势(图 3B)。其他ECM类群,如衍生自白腐菌的Hebeloma,在低无机氮土壤中存在相对较高的丰度,可能也有助于本文所观察到的功能转移。我们还检测了形成根状菌丝和外延菌丝的ECM类群的相对丰度,以及与获得有机氮相关的形态特征。形成根状菌丝的ECM属和中距离探测类型的相对序列丰度,在BAI变化点以下的红栎个体显著大于在统计BAI变化点以上的个体(图3C, D)。

生长响应与N-SOM吸收一致的红栎(Q. rubra)个体(即生长在低无机N土壤中的个体),其ECM群落具有明显的降解SOM的特征。这些ECM群落通常具有更高的CAZy 基因(图 3E)。在BAI改变点以下显著富集的几个关键基因家族包括纤维二糖脱氢酶(AA3_1)和裂解多糖单加氧酶(LPMO’s: AA9, AA10, AA11),它们共同作用于降解SOM(Fig. 3F)。GDM分析表明,ECM降解基因的组成丰度对净N矿化率表现出强烈的群落阈值响应(最大值为0.5μg IN g soil-1 d-1))。这一ECM群落的临界响应值与BAI阈值是一致的,表明了在IN有效性较低的土壤中,低于该阈值的ECM群落具有相似的基因组降解潜力。在BAI阈值一下,随着无机氮有效性逐渐降低,某些ECM基因家族的转录差异可能解释了N- SOM对树木生长的潜在贡献更大。

3)树木生长响应

我们计算了每棵树的年生长氮效率(GNE),以该值为年大气二氧化碳量的应变量(图 4A, D)。采用变化点分析法分析每棵树的斜率参数(λ)(即,iCO2效应)作为净N矿化率的应变量(图 4 B, E)。模型估算显示在N矿化梯度上,树木生长和CO2效应(λ)的变化点为净氮转化速率成为0.39±0.01 μg IN g−1 soil d−1(图 4 E)。土壤净N转化低于这一点时,CO2 浓度增加促进GNE,导致CO2施肥的正效应;相反,生长更高的IN有效应土壤中 (即该拐点的右边),CO2的施肥效应不显著(图 4F)

外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

图2. 无机氮和N-SOM对植物生长的贡献分析框架和模型。(A)树木生长作为净氮矿化率应变量的代表性分析。变化点分析确定拐点的发生和位置,以及每边的斜率参数值。(B)基径面积增量(BAI),取自沿着研究的净氮矿化梯度(黑色圆圈代表单个生长年)的54棵红栎树。红色和蓝色线表示模型估计的BAI均值和95% PI在识别的变化点(BAI变化点;估算值是根据其他协变量的平均值计算的)。R2表示总体贝叶斯模型拟合度。(C) 斜率参数之间存在显著差异(95% CIs不重叠;不同的字母表示(n = 54))。星号表示参数不等于零(95% CI不与零重叠)。

外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

图3. 土壤N梯度下ECM群落组成、形态和功能转化与其N觅食性状的协同关系。A和B.沿净氮矿化速率梯度(x轴)ECM真菌Cortinarius和Russula的相对序列丰度。彩色条带描述了GAM拟合曲线;C. 箱式-须状图描述了BAI阈值以上及以下ECM真菌形成的短或中距离勘探类型;D. BAI阈值(0.53 N g soil -1 d-1)以上和以下形成菌索状菌丝的ECM真菌群落序列相对丰度;E. CAZy 基因总数;F. 在BAI阈值一下丰富显著增加的特定基因属。

外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

图4. 环境依赖性iCO2施肥响应的分析框架和证据。A. 沿净氮矿化梯度生长-氮效率指数(GNE)作为历史大气CO2浓度增加的应变量(不同线及其相对斜率)的代表性分析框架;B. iCO2 (λ)对植物生长影响的概念图, 变化点分析可以探测到沿土壤梯度生长 响应的拐点;C. 由图B的红色和蓝色部分得出的θ的差异,表明变化点前后不同斜率值。D.过去38年收集的54棵红栎树的年代学数据。单个点代表估计的年GNE值,不同颜色代表林下土壤净氮矿化比率的高低。E. 单个点代表单个树对二氧化碳的响应(平均模型斜率来自图D)。F. 变化点(E)左边和右边的斜率平均值和95%置信区间。



  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 03 - 14
    栢晖,第三方专业科研检测机构2025年3月8日下午13点,栢晖生物举行了一年一度的“安全日”活动。本次活动分为“安全知识培训”和“消防实操演练”两个环节,旨在进一步提升全员安全意识和应急处置能力。活动伊始,总经理杨锦兀发表讲话,介绍了举办“安全日”活动的初心与意义,并强调实验室安全对企业和员工的重要性。他指出,只有将安全理念内化于心、外化于行,才能保障科研工作的有序开展。在随后的安全知识培训中,实验室张副经理围绕灭火器使用、试剂管理、气瓶安全和现场应急处理等内容进行了系统讲解。张副经理结合真实案例,深入浅出地讲解了灭火器的正确操作步骤、火灾应对要点,以及实验室试剂的分类、存储和废弃处理规范等。通过图示和现场互动,全体员工对安全操作有了更清晰、更全面的认识。消防演练环节中,张副经理现场示范灭火器的正确使用方法,并组织员工逐一进行实操训练。通过动手演练,大家切实掌握了应急灭火技能,提升了面对突发状况的应对能力。安全,是科研顺利推进的前提,也是企业可持续发展的保障。栢晖生物始终坚持“安全第一、预防为主”的原则,持续夯实安全管理基础,营造更加安全、高效的实验环境。
  • 点击次数: 0
    2025 - 03 - 05
    文献解读原名:Multitrophic interactions support belowground carbon sequestrationthrough microbial necromass accumulation in dryland biocrusts译名:多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存期刊:Soil Biology and BiochemistryIF:9.8发表日期:2025年1月第一作者:石佳 中国农业大学 博士研究生通讯作者:王祥 中国农业大学 教授1背景土壤有机碳(SOC)是全球最大的陆地有机碳库,估计有1500-2400 Pg。SOC在调节全球碳储量和通量方面发挥着重要作用。土壤微生物被视为土壤碳动态的主要调节因子。一般来说,微生物通过分解减少SOC库存,同时通过形成微生物生物量和稳定坏死残留物来促进稳定的碳库。最近对土壤生物标志物的全球评估表明,微生物尸体占SOC库的50%,而活微生物生物量不到5%。因此,需要深入了解控制微生物生命和死亡过程的机制,以揭示全球碳循环的复杂性,并制定有效的土壤管理策略。如生物物理特征、细胞化学组成和生活史等,影响土壤有机物循环与微生物残体碳(MNC)积累。碳利用效率(CUE)衡量转化为微生物生物量的有机碳占比,反映土壤有机碳(SOC)平衡,与 MNC、SOC 的关系存争议。竞争、互利共生和捕食等生物相互作用,影响微生物残体形成与性质。土壤微生物是食物网基础,种间竞争和高营养级捕食影响其存亡与生物量向残体的转化。营养级内和级间的相互作用,会影响 MNC 积累与 SOC 。2提出假设(1)多个营养级类群会介导土壤微生物残体碳的积累。(2)营养级内的资源竞争和跨营养级的掠食性捕食,都可能导致土壤碳更高效地分解,以及微生物残体积累减少。3材料与方法(1)研究区域位于中国西北部陕西省神木市...
  • 点击次数: 0
    2025 - 03 - 01
    栢晖生物成立于2014年,致力于为生态、农业、林业等科学研究领域提供专业的检验检测服务。公司总部位于成都市成华区四川检验检测创新科技园,实验室规模近3000平,拥有成熟、完善的实验室管理体系。01招聘岗位概览01技术支撑(3人,6-15k)岗位要求:1.生态学、农学、土壤学、林学、草学、环境工程专业硕士,接受应届生;2.有相关实验经验(氨基糖,木质素酚,土壤酶活,有机酸检测,磷组分,PLFA,微生物碳氮磷,有机氮组分等),对于常规实验方法熟悉;3.熟悉相关实验室仪器设备(如:TOC仪,元素分析仪,液相等),了解并掌握相关实验数据的分析能力;4.性格外向,沟通能力强,能适应偶尔出差;岗位职责:1.项目前期对接(回复技术咨询,实验方案确认等);2.监督项目进度(与实验室对接检测要求,监督实验进度、确认实验数据);3.项目后期处理(追踪数据发放,协助处理项目结算等相关问题)。工作地点:成都02品牌经理(9人,6-15k)岗位要求:1、生态学、农学、土壤学、林学、草学、环境工程专业本科及以上学历,23及24届研究生优先,优秀25届亦可;2、有相关实验经验(氨基糖,木质素酚,土壤酶活,有机酸检测,磷组分,PLFA,微生物碳氮磷,有机氮组分等),对于常规实验方法熟悉;3、性格外向,沟通能力强,能适应出差;4、工作踏实,自律性和执行能力强,具有积极进取的精神和不断学习的态度;5、有第三方检测机构相关经验者优先考虑。岗位职责:1、负责所在区域高校和企业市场的开拓推广工作,进入高校开展线下讲座、企业宣讲等活动;2、定期拜访高校和企业相关重点客,通过邮件、直播讲座、电话及微信等与需求客户维持良好的检测合作关系;3、主动学习各种专业知识,关注行业动态及政策;4、负责完成上级领导布置的业绩目标和工作目标;工作地点(驻点城市):北京 广州 南京 杭州 昆明 西安 长沙 沈阳 福州03项目管理(3人,...
  • 点击次数: 0
    2025 - 02 - 13
    木质素酚的来源木质素是土壤有机碳的重要组成部分,具有芳香单元的三维立体结构, 化学稳定性高,未经分离或化学转化,现有的分析技术很难对其进行直接定量分析。分子标志物的方法是目前用于测定土壤木质素含量和组成较为普遍的方法,即用木质素酚类化合物的含量,对木质素的含量及有机质来源进行指示。目前常用的处理方法是碱性氧化铜裂解出小分子单体,通过LC-DAD、LC-MS、GC-FID和GCMS测定。目标物质分类及应用意义香草基酚系列(V):香草酸、香草醛、香草乙酮丁香基酚系列(S):丁香酸、丁香醛、乙酰丁香酮肉桂基酚系列(C):对-香豆酸、阿魏酸对羟基酚系列(P):对羟基苯甲酸、对羟基苯甲醛、对羟基苯乙酮样品处理方法方法原理:土壤样品中木质素通过碱性氧化铜在高温下水解成单环酚盐类,调节pH=1,用液液萃取提取出酚类单体,经双(三甲基硅烷基)三氟乙酰胺(BSTFA)衍生,用GCMS分离检测,以保留时间和质谱特征离子定性,内标法定量。操作步骤:称0.5-1.0g(精确至0.0001g)样品于反应釜,加1.0g氧化铜和0.1g硫酸亚铁铵,混匀。加10mL氢氧化钠(2mol/L),氮气置换釜内空气15min,170 ℃ 水解3h,加40ug内标,转移,离心,固液分离,10mL超纯水分两次清洗沉淀,合并上清液。1+1盐酸调pH=1,暗处放置1h,离心,固液分离,0.1molL盐酸清洗沉淀两次,合并上清液。提取液加2g氯化钠,混匀,用30mL乙酸乙酯分3次萃取,收集合并有机相,过无水硫酸钠除水。40 ℃氮吹至干燥,加100uL吡啶和400uLBSTFA,70℃下反应3h,上机测定。校正曲线:取适量木质素酚标准使用液,加入到预先装有1mL乙酸乙酯的衍生瓶中,加40ug内标,配制成系列标准溶液,40 ℃下氮气吹干,衍生。数据计算及分析定性方法:通过样品中目标物与标准系列中目标物的保留时间、质谱图,碎片离...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务