028-8525-3068
新闻动态 News
News 行业新闻

外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

日期: 2021-10-29
标签:
外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应


外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

摘要

植物菌根互作调节了植物氮(N)的限制,并可以为CO2增加对植物生长影响的持续时间和强度提供模型预测信息。在成熟的温带森林中,随着自然土壤养分梯度的增加,红栎(Quercus rubra L.)对CO2增加 (iCO2)的施肥反应呈积极的、但依赖于环境的树木年代学证据。我们通过外生菌根(ECM)真菌N觅食性状相关的宏基因组测量和植物吸收无机氮(IN)和土壤有机质绑定N (N-SOM)的树木年代学模型共同来研究这种异质性响应。在IN有效性较低的土壤条件下,N-SOM可以促进树木生长,ECM真菌群落具有更大的降解SOM和获得N-SOM的基因组潜力。这些树经历了38年的持续CO2施肥。相比之下,植物在IN丰富的土壤中生长,与之共生的ECM真菌群落具有较低的SOM降解能力,iCO2对树木生长并无显著影响。本研究阐明了ECM真菌群落的N觅食性状分布会如何影响树木对N-SOM的获取及后续其对iCO2的生长响应。

研究背景

逐渐升高的CO2刺激了全球范围内的总初级生产力,地球系统模型(ESM)指出这种效应可延续至2070年。虽然全球范围的研究推断出适度的历史施肥效应,但在成熟森林生态系统规模上,CO2增加刺激生产力的证据尚不明确。在成熟森林中进行的CO2富集控制实验表明CO2升高(eCO2)对树木生长存在着正的、适度的和饱和的响应。氮(N)有效性,特别是在成熟的森林被广泛认为制约了树木生长对CO2的响应。

植物氮限制通常与IN的有效性有关,而IN需通过微生物矿化土壤有机质(SOM)转化而成。相比之下,土壤有机质绑定N (N-SOM)被认为是植物无法直接获得的, ESM模型中很少考虑N-SOM的作用。然而,对N-SOM的收收可能是特定植物短期适应IN供给不足的重要途径。植物对N-SOM的吸收取决于外生菌根(ECM)真菌共生体的活性。ECM真菌可能酶降解和非酶降解机制获得N-SOM。尽管ECM群落为植物提供了大部分的N,但ECM群落及其N-觅食特性与植物对iCO2响应之间关系的研究及其缺乏,极大地限制ECM宿主植物生长对iCO2相应的准确预测。

植物与ECM形成互惠共生关系以最大化获取氮和最小化植物碳(C)支出(C投资的N收益)。不同的ECM类群降解SOM的能力差异很大,更强的分解能力需要更多的植物C投资。在IN有效性较低的条件下,选择获取N-SOM可能更加有利。我们推测由于N- SOM和IN都对树木生长有贡献。因此,与具有更强分解潜力的ECM群落共生的树木(即生长在IN贫乏土壤中)的对iCO2的响应最大。相反,树木氮源以IN为主(即生长在IN丰富的土壤中),树木对iCO2的生长效应较小(图1)。本研究旨在,(1)阐明N-SOM对树木生长的贡献;(2)沿着自然土壤IN梯度,量化ECM真菌群落聚集降解性状(CADT);(3)揭示CADT和树木N-SOM获取与树木对iCO2响应的关系

外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

图1. 不同氮(N)形式对树木生长的假设性贡献(红色和橙色线; y-轴)以及树木对历史性CO2 增加(iCO2)的反应。这些响应随无机氮供应速率的变化而变化(净氮矿化速率:x轴)。深蓝色箭头表示iCO2相对化施肥反应(箭头宽度)。利用宏基因组学方法估算了ECM真菌群落组成、形态性状和群落聚集衰变性状(CADT),并假设它们随土壤无机氮有效性的变化而变化。注:假设ECM类群的优势地位在超根根状菌丝和中长距离探索形态上发生了转变。根上的白色斑点表示ECM根尖的相对丰度

主要结果

1)树木年代学模型与植物N吸收

在考虑了其他生长限制因素后,沿着土壤净氮矿化(即IN供应)的梯度,树木年增长率(BAI)是一致的(图2A)。然而,如果在树木生长(BAI)中增加N-SOM这一预测因子后,则观察到生长速率与IN供应之间的关系将被削弱。(图2A中的斜率变小,红色)。我们发现植物生长促进效应与N矿化梯度的拐点出现在0.53±μg IN g-1d-1 (Fig. 2B),BAI和净N矿化率之间存在显著的变化点,变化点左侧的斜率明显比右侧的斜率更弱(更小)。在BAI统计变化点以下的树木生长显著大于仅基于无机氮贡献的预测。在考虑了其他生长限制变量后,我们将这高于预期的生长响应解释为N-SOM对树木生长的假定贡献。

2) 外生菌根群落分析

与模拟BAI对土壤无机氮有效性的响应一致,ECM群落的组成和形态特征也发生了显著变化。这些变化与假设的N-SOM和无机N对树木生长的贡献相一致(图 3)。无机氮有效性低的条件下,ECM群落中Cortinarius占优势(图 3A)。Cortinarius被认为可分泌大量的氧化酶参与N-SOM的获取。相反,在高无机N有效性条件下,Russula占优势(图 3B)。其他ECM类群,如衍生自白腐菌的Hebeloma,在低无机氮土壤中存在相对较高的丰度,可能也有助于本文所观察到的功能转移。我们还检测了形成根状菌丝和外延菌丝的ECM类群的相对丰度,以及与获得有机氮相关的形态特征。形成根状菌丝的ECM属和中距离探测类型的相对序列丰度,在BAI变化点以下的红栎个体显著大于在统计BAI变化点以上的个体(图3C, D)。

生长响应与N-SOM吸收一致的红栎(Q. rubra)个体(即生长在低无机N土壤中的个体),其ECM群落具有明显的降解SOM的特征。这些ECM群落通常具有更高的CAZy 基因(图 3E)。在BAI改变点以下显著富集的几个关键基因家族包括纤维二糖脱氢酶(AA3_1)和裂解多糖单加氧酶(LPMO’s: AA9, AA10, AA11),它们共同作用于降解SOM(Fig. 3F)。GDM分析表明,ECM降解基因的组成丰度对净N矿化率表现出强烈的群落阈值响应(最大值为0.5μg IN g soil-1 d-1))。这一ECM群落的临界响应值与BAI阈值是一致的,表明了在IN有效性较低的土壤中,低于该阈值的ECM群落具有相似的基因组降解潜力。在BAI阈值一下,随着无机氮有效性逐渐降低,某些ECM基因家族的转录差异可能解释了N- SOM对树木生长的潜在贡献更大。

3)树木生长响应

我们计算了每棵树的年生长氮效率(GNE),以该值为年大气二氧化碳量的应变量(图 4A, D)。采用变化点分析法分析每棵树的斜率参数(λ)(即,iCO2效应)作为净N矿化率的应变量(图 4 B, E)。模型估算显示在N矿化梯度上,树木生长和CO2效应(λ)的变化点为净氮转化速率成为0.39±0.01 μg IN g−1 soil d−1(图 4 E)。土壤净N转化低于这一点时,CO2 浓度增加促进GNE,导致CO2施肥的正效应;相反,生长更高的IN有效应土壤中 (即该拐点的右边),CO2的施肥效应不显著(图 4F)

外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

图2. 无机氮和N-SOM对植物生长的贡献分析框架和模型。(A)树木生长作为净氮矿化率应变量的代表性分析。变化点分析确定拐点的发生和位置,以及每边的斜率参数值。(B)基径面积增量(BAI),取自沿着研究的净氮矿化梯度(黑色圆圈代表单个生长年)的54棵红栎树。红色和蓝色线表示模型估计的BAI均值和95% PI在识别的变化点(BAI变化点;估算值是根据其他协变量的平均值计算的)。R2表示总体贝叶斯模型拟合度。(C) 斜率参数之间存在显著差异(95% CIs不重叠;不同的字母表示(n = 54))。星号表示参数不等于零(95% CI不与零重叠)。

外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

图3. 土壤N梯度下ECM群落组成、形态和功能转化与其N觅食性状的协同关系。A和B.沿净氮矿化速率梯度(x轴)ECM真菌Cortinarius和Russula的相对序列丰度。彩色条带描述了GAM拟合曲线;C. 箱式-须状图描述了BAI阈值以上及以下ECM真菌形成的短或中距离勘探类型;D. BAI阈值(0.53 N g soil -1 d-1)以上和以下形成菌索状菌丝的ECM真菌群落序列相对丰度;E. CAZy 基因总数;F. 在BAI阈值一下丰富显著增加的特定基因属。

外生菌根对有机氮的获取调节了温带优势树种的CO2施肥响应

图4. 环境依赖性iCO2施肥响应的分析框架和证据。A. 沿净氮矿化梯度生长-氮效率指数(GNE)作为历史大气CO2浓度增加的应变量(不同线及其相对斜率)的代表性分析框架;B. iCO2 (λ)对植物生长影响的概念图, 变化点分析可以探测到沿土壤梯度生长 响应的拐点;C. 由图B的红色和蓝色部分得出的θ的差异,表明变化点前后不同斜率值。D.过去38年收集的54棵红栎树的年代学数据。单个点代表估计的年GNE值,不同颜色代表林下土壤净氮矿化比率的高低。E. 单个点代表单个树对二氧化碳的响应(平均模型斜率来自图D)。F. 变化点(E)左边和右边的斜率平均值和95%置信区间。



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
  • 点击次数: 0
    2024 - 09 - 10
    本标准规定了去除杂质、风干、烘干、磨碎等制备森林植物及森林枯枝落叶层样品的方法。本标准适用于森林植物及森林枯枝落叶层样品的制备。样品制备流程 1、去除杂质  植物样品,如果是叶子,要用清洁的湿纱布揩擦干净,如果是树皮或根,则将其表面的干土用刷子把它刷净;微量元素分析用的样品须用1~3g/L去垢剂溶液洗涤,再用水淋净。森林枯枝落叶层样品要挑尽混在其间的石砾、土块等非有机物质。 2、风干和烘干  把揩擦干净的植物新鲜样品及森林枯枝落叶层样品放在通风的地方,铺成薄层,并经常翻动使尽快风干,切不可使其霉变,风干后装入布口袋中。在有烘箱的条件下,可把擦干净的植物新鲜样品及森林枯枝落叶层样品松松地放入烘箱中,一般分两步干燥:先将植物新鲜样品在80~90℃鼓风烘箱中烘15~ 30 min(松软组织烘15 min,致密坚实的组织烘30 min),然后降温至65℃,森林枯枝落叶层样品可直接 在65℃烘干。干燥时间须视新鲜样品含水量而定,通常为12~14 h。然后装入布口袋中。 3、磨碎  样品磨碎前需在65℃烘箱中烘到发脆,然后再进行磨碎处理。如果只测定氮、磷、钾、钠、钙、镁,则可用植物粉碎机磨碎,并通过2mm筛孔,然后装于磨口广口瓶中备用。若分析项目除以上内容外,还要测定微量元素,则样品可用不锈钢剪刀剪细或放在研钵中研碎,并通过2 mm尼龙筛孔,然后装入磨口广口瓶中备用。木材试样可用刨子刨成刨花或用刀劈成小块后再用不锈钢剪刀剪细,装于磨口广口瓶中备用。注:1、已发霉的样品不能用来作森林植物的化学分析,因发霉可促进样品内部酶的催化作用,造成有机物质的严重损失。2、制备样品时应防止烟雾和灰尘污染。更多检测相关内容so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 08 - 30
    原名:Characteristics of dissolved black carbon in riverine surface microlayer译名:河流表层中溶解性黑碳的特征期刊:Marine Pollution BulletinIF:5.3发表日期:2023.07第一作者:Vaezzadeh, Vahab 中国科学院广州地球化学研究所有机地球化学国家重点实验室 粤港澳环境污染与控制联合实验室一、背景黑碳(BC)是由生物质和化石燃料不完全燃烧产生的。根据BC的结构和土壤组成,土壤中的BC最终会生物降解并在孔隙水中溶解,从而通过地表径流输送到水生环境中。BC的溶解形式(DBC)通过河流进入海洋,由于其难降解的特性,对地球上的碳循环具有重要意义。先前使用(BPCAs)苯多羧酸方法的研究已经证明了河流和海洋中不同的DBC特征。虽然DBC的河流输出被认为是海洋DBC库的主要贡献者,其速率为27 Tg -1C-1y ,但关于河流DBC的含量和特征(结构和同位素特征)的数据缺乏。表层微层(SML)厚度为1 ~ 1000 μm,是大气和水生环境之间的分界线,与下层相比,具有不同的生物地球化学特性。SML在(可溶性有机碳)DOC及其难熔部分的扩散气水交换中起着重要作用,既是DBC的来源,也是DBC的汇。目前,有机污染物在SML中的富集已经得到了广泛的研究,而空气-水界面的DBC研究一直被忽视。因此,通过对珠江(PR)上、中和下游的SML中DBC含量组成及其同位素的研究弥补河流DBC特征和河口DBC的运输机制的数据的缺失以及有助于更好的理解DBC沿陆-海洋连续体的运输和命运。二、科学问题(1)分析从PR中采集的SML样本中DBC的含量、组成和δ13C特征。(2)将SML中DBC的特征和来源与全球不同水生生态系统的现有文献进行比较。三、材料与方法(1)SML水样采集于2020年10月东...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务