028-8525-3068
新闻动态 News
News 行业新闻

森林扩展到苔原的碳储存临界点与菌根氮循环有关

日期: 2021-09-01
标签: Karina Engelbrecht Clemmensen

原名:A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen

译名:森林扩展到苔原的碳储存临界点与菌根氮循环有关

期刊:Ecology Letters

IF:9.492

发表时间:2021年2月23日

第一作者: Karina Engelbrecht Clemmensen

通讯作者:Karina Engelbrecht Clemmensen

主要单位:瑞典农业大学


#1

Abstract

Tundra ecosystems are global belowground sinks for atmospheric CO2. Ongoing warming-induced encroachment by shrubs and trees risks turning this sink into a CO2 source, resulting in a positive feedback on climate warming. To advance mechanistic understanding of how shifts in mycorrhizal types affect long-term carbon (C) and nitrogen (N) stocks, we studied small-scale soil depth profiles of fungal communities and C–N dynamics across a subarctic-alpine forest-heath vegetation gradient. Belowground organic stocks decreased abruptly at the transition from heath to forest, linked to the presence of certain tree-associated ectomycorrhizal fungi that contribute to decomposition when mining N from organic matter. In contrast, ericoid mycorrhizal plants and fungi were associated with organic matter accumulation and slow decomposition. If climatic controls on arctic-alpine forest lines are relaxed, increased decomposition will likely outbalance increased plant productivity, decreasing the overall C sink capacity of displaced tundra.

#2

摘要

苔原生态系统是全球大气二氧化碳的地下汇。而持续变暖导致的灌木和树木的入侵可能将这个汇变成二氧化碳的来源,从而对气候变暖产生积极的反馈。为了从机理上理解菌根类型的转变如何影响长期的碳(C)和氮(N)储量,我们研究了亚北极-高山森林-高山灌丛梯度上的小尺度土壤深度剖面的真菌群落和C-N动态。地下有机储量从灌丛到森林的转变过程中急剧减少,这与某些与树木共生的外生菌根真菌有关,这些真菌在从有机质中获取氮时有助于分解。相反,杜鹃类菌根植物和真菌与有机质积累和缓慢分解有关。如果缓解对北极-高山林线的气候控制,增加的分解很可能会抵消植物生产力的增加,降低苔原的整体碳汇能力。

#3

Keywords/关键词

Arctic warming, carbon sequestration, decomposition, functional genes, meta-barcoding, mycorrhizal type, nitrogen cycling, soil fungal communities, stable isotopes, treeline ecotone.

关键词:北极变暖;固碳;分解;功能基因;元编码;菌根类型;氮循环;土壤真菌群落;稳定同位素;树线交错带。

#4

前言

由于气候变暖,北极和高寒苔原的植物群落组成发生了变化,即落叶灌木优势度增加。与此同时,高大的灌木或森林物种取代了以前的低矮苔原植被,因为它们的分布沿着纬度和海拔梯度改变。尽管初级生产力很低,但许多苔原生态系统在地下积累了大量的有机质。气候变暖使这些碳储备面临风险,而最敏感的落叶灌木和乔木形成外生菌根共生体,而主导苔原系统的杜鹃类菌根矮灌木和非菌根莎草则相反。植被的菌根类型已被强调为地下养分循环和碳储存的重要预测因子。然而,尽管菌根介导的植物-土壤反馈可能控制苔原生态系统对全球气候的反馈的大小和方向,但在这一背景下,北极北部的过渡几乎没有受到关注。

我们使用从瑞典北部的高山苔原到亚高山白桦林的海拔梯度来检验这一假设:苔原到森林过渡区地下有机质储量的减少与菌根共生的优势类型的转变有关,即从苔原的杜鹃类菌根转变为森林的外生菌根。我们使用有机质特征和微生物群落的精细尺度垂直剖面来推断跨树线交错带的长期碳和氮动态的差异。我们的结果表明,在森林中,某些外生菌根真菌加快了有机物的分解,超过了大型植物本身的分解。且对树根的实验排除证实了它们对森林中有机物分解的促进作用。

#5

研究内容

本研究于2009年在瑞典北部阿比斯科进行实验布置及野外采样工作。分析了样品的酸碱度、有机物含量、总溶解碳和氮库、稳定同位素比率、真菌生物量(麦角甾醇)和微生物群落。

#6

主要结果

1. 树木生物量和土壤碳储量在森林中呈负相关

森林扩展到苔原的碳储存临界点与菌根氮循环有关

图1瑞典北部亚北极-高山森林-荒野植被梯度上四个地点的植被组成和生态系统碳储量。


2.碳-氮动力学

从新鲜凋落物到半分解凋落物层和腐殖质层,C:N随深度而降低(图2a);真菌生物量一般随深度而下降,林下土壤有机碳、氮含量在森林最高,林下有机碳、氮含量之比荒野植被最低(图2 e、f、g);无机氮浓度在荒野植被中最高(图2h),荒野植被和灌木中参与无机氮转化的细菌和古菌的丰度更高(图2k,l);细菌与真菌的比率在荒野植被也最高(图2j)。
森林扩展到苔原的碳储存临界点与菌根氮循环有关

图2瑞典北部沿亚北极-高山森林-荒野植被梯度的四种生态系统类型中氮循环模式的指标。(F:森林;FE:森林边缘;SH:高山灌木;H:荒野植被)。


3. 真菌群落

腐殖真菌在凋落物层中占优势,菌根和其他与根相关的真菌在腐殖质层中占优势(图3a,b);与根相关的子囊菌(包括杜鹃花状菌根真菌)的相对丰度在森林中最高,而外生菌根真菌的相对丰度在荒野植被和灌木生境中最高(图3b,c)。菌丝体分化较少的外生菌根真菌(短距离探索型)在荒野植被和灌木中所占比例较高,而菌丝体为长距离运输外生菌根物种向森林的比例增加(图3c)。
森林扩展到苔原的碳储存临界点与菌根氮循环有关

图3瑞典北部亚北极-高山森林-荒野植被梯度上四种生态系统有机土壤剖面中的真菌群落组成。l:凋落物;h:腐殖质。


4. 树根排除减少分解

凋落物的质量损失、呼吸作用和真菌生物量总体高于腐殖质。森林凋落物第一年的质量损失比荒野植被凋落物快,但森林腐殖质比荒野植被腐殖质慢(图4b,c,d)。排除活的桦树根略微降低了真菌生物量,并且几乎消除了分解袋的外生菌根真菌定殖,而其他与根相关的真菌,包括杜鹃花状菌根真菌,保持不受影响(图4a,c)。活根的存在总体上增加了3年后凋落物和腐殖质的质量损失(图4b)。
森林扩展到苔原的碳储存临界点与菌根氮循环有关

图4 瑞典北部亚北极白桦林中有无树根和外生菌根真菌时五种有机基质的分解。五种有机基质在网袋中培养3年后的真菌群落组成(a)、剩余质量(b)、真菌生物量(c)和呼吸速率(d)。

#7

讨论

      本研究的分解实验证实,积累在该地区苔原系统的大量有机物比附近白桦林中的有机物更容易分解。在本研究中对植被梯度现状的一个合理解释是,其他生物因素(例如竞争)或气候驱动因素(例如生长季节的长度、极端温度或有限的积雪覆盖)是白桦林和相关生物群向上扩张的主要制约因素,而不是低氮矿化。我们提出了一个由外生菌根共生驱动的植物-土壤反馈机制,它将植被变化与前进的亚北极树线上不断下降的地下碳储量联系起来。这一机制预测了植被和土壤动态中协调、相互依赖的模式,导致当苔原变成森林时,生态系统碳储量减少(图5)。森林边界的推进将促进外生菌根真菌群落,该群落有能力释放大量有机氮储备并促进树木生长,潜在地导致强大的、积极的植物-土壤反馈,从而加速树木向前苔原扩展,并支持苔原对气候变暖的积极反馈。

森林扩展到苔原的碳储存临界点与菌根氮循环有关

图 5 树线梯度概念图。(北极绒毛桦形成林线,并与外生菌根真菌群落相关联,在开采氮 (N) 时能够分解土壤有机质。因此与林线以上的灌木和苔原生态系统相比,其有机物质周转速度更快,腐殖质总量更小。而在林线以上的系统,由于较低的分解能力和缺乏外生菌根N开采的树木,促进了无机N循环。)



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 12
    1、试剂柠檬酸(AR) 柠檬酸三钠(AR) 无水甲醇(AR) 三氯甲烷(AR) 丙酮(AR) 甲苯(AR) 氢氧化钾(AR) 冰乙酸(AR) 正己烷(色谱纯) 十九烷酸甲酯(19:0)2、仪器气相色谱仪 冻干机 振荡仪 过柱装置 水浴锅 水浴氮吹仪 干式氮吹仪 高速离心机3、材料高速离心管 试管(100 mL、5 mL) 10 mL具塞试管 3 mL硅胶柱 玻璃滴管(可拆卸橡胶头)黑色塑料袋 玻璃量筒(1 mL、5 mL) 移液器(5 mL、1 mL、100 μL)4、试剂制备柠檬酸缓冲液:称取柠檬酸37.5 g,柠檬酸三钠44.1 g,溶于1 L超纯水中。提取液:依次加入柠檬酸缓冲液64 mL、无水甲醇160 mL、三氯甲烷80 mL,混合均匀。(现用现配,低温隔夜会析出盐)。甲醇甲苯混合溶液(1:1):15 mL无水甲醇、15 mL甲苯混合均匀(现用现配)。0.5 mol/L KOH溶液:称取28.05 g KOH,溶于1 L超纯水中。0.2 mol/L KOH甲醇溶液(2:3):取0.5 mol/L KOH溶液40 mL,溶入60 mL无水甲醇。1 mol/L冰乙酸溶液:取1.74 mL冰乙酸,溶入30 mL去离子水。5、样品处理土样冻干:称取土壤4.00 g(沙土8.00g)于高速离心管中,冰冻过夜,随后放入冻干机冻干。土壤含水率测定:称取土壤5.00 g于105 ℃下烘干3 h,随后冷却至室温,取出称重,计算含水率。6、测定6.1取出冻干土样,加入23ml提取液,避光振荡2h;6.2离心取上清液,重复步骤1 ,合并两个上清液;6.3依次加入三氯甲烷、柠檬酸缓冲液,避光过夜;6.4去除上清液,吹干三氯甲烷;6.5过柱;6.6吹干无水甲醇,用甲醇甲苯溶液、KOH甲醇溶液复溶,水浴,冷却至室温;6.7加入去离子水、冰乙酸...
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
  • 点击次数: 0
    2024 - 09 - 10
    本标准规定了去除杂质、风干、烘干、磨碎等制备森林植物及森林枯枝落叶层样品的方法。本标准适用于森林植物及森林枯枝落叶层样品的制备。样品制备流程 1、去除杂质  植物样品,如果是叶子,要用清洁的湿纱布揩擦干净,如果是树皮或根,则将其表面的干土用刷子把它刷净;微量元素分析用的样品须用1~3g/L去垢剂溶液洗涤,再用水淋净。森林枯枝落叶层样品要挑尽混在其间的石砾、土块等非有机物质。 2、风干和烘干  把揩擦干净的植物新鲜样品及森林枯枝落叶层样品放在通风的地方,铺成薄层,并经常翻动使尽快风干,切不可使其霉变,风干后装入布口袋中。在有烘箱的条件下,可把擦干净的植物新鲜样品及森林枯枝落叶层样品松松地放入烘箱中,一般分两步干燥:先将植物新鲜样品在80~90℃鼓风烘箱中烘15~ 30 min(松软组织烘15 min,致密坚实的组织烘30 min),然后降温至65℃,森林枯枝落叶层样品可直接 在65℃烘干。干燥时间须视新鲜样品含水量而定,通常为12~14 h。然后装入布口袋中。 3、磨碎  样品磨碎前需在65℃烘箱中烘到发脆,然后再进行磨碎处理。如果只测定氮、磷、钾、钠、钙、镁,则可用植物粉碎机磨碎,并通过2mm筛孔,然后装于磨口广口瓶中备用。若分析项目除以上内容外,还要测定微量元素,则样品可用不锈钢剪刀剪细或放在研钵中研碎,并通过2 mm尼龙筛孔,然后装入磨口广口瓶中备用。木材试样可用刨子刨成刨花或用刀劈成小块后再用不锈钢剪刀剪细,装于磨口广口瓶中备用。注:1、已发霉的样品不能用来作森林植物的化学分析,因发霉可促进样品内部酶的催化作用,造成有机物质的严重损失。2、制备样品时应防止烟雾和灰尘污染。更多检测相关内容so栢晖生物了解更多~
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务