028-8525-3068
新闻动态 News
News 行业新闻

不同气候条件下长期群落培养后微生物代谢及其残体介导的施肥对有机碳的影响

日期: 2021-08-20
标签:

Abstract: Understanding the effects of changing climate and long-term human activities on soil organic carbon (SOC) and the mediating roles of microorganisms is critical to maintain soil C stability in agricultural ecosystem. Here, we took samples from a long-term soil transplantation experiment, in which large transects of Mollisol soil in a cold temperate region were translocated to warm temperate and mid-subtropical regions to simulate different climate conditions, with a fertilization treatment on top. This study aimed to understand fertilization effect on SOC and the role of soil microorganisms featured after long-term community incubation in warm climates. After 12 years of soil transplantation, fertilization led to less reduction of SOC, in which aromatic C increased and the consumption of O-alkyl C and carbonyl C decreased. Soil live microbes were analyzed using propidium monoazide to remove DNAs from dead cells, and their network modulization explained 60.4% of variations in soil labile C. Single-cell Raman spectroscopy combined with D2O isotope labeling indicated a higher metabolic activity of live microbes to use easily degradable C after soil transplantation. Compared with non-fertilization, there was a significant decrease in soil α- and β-glucosidase and delay on microbial growth with fertilization in warmer climate. Moreover, fertilization significantly increased microbial necromass as indicated by amino sugar content, and its contribution to soil resistant C reached 22.3%. This study evidentially highlights the substantial contribution of soil microbial metabolism and necromass to refractory C of SOC with addition of nutrients in the long-term.


摘要:了解气候变化和人类长期活动对土壤有机碳(SOC)的影响以及微生物的调控作用是维持农业生态系统土壤C稳定的关键。本研究进行了一个长期土壤移置实验即将寒温带的黑土迁移至暖温带和中亚热带地区以模拟不同的气候条件,并在顶部进行施肥处理。研究旨在了解在温暖气候条件下长期群落培养后,施肥对土壤有机碳的影响以及土壤微生物的作用。土壤移置12年后,施肥导致SOC减少,其表现为芳香C的增加,以及烷基C和羰基C的减少。用叠氮溴化丙锭去除死细胞中的DNAs后,对土壤中活的细菌群落进行了分析,发现其网络模块化解释了60.4%土壤易分解C变化。单细胞拉曼光谱结合D2O同位素标记表明土壤移置后活微生物对易降解碳的代谢活性较高。与不施肥相比,气候变暖与施肥条件下,土壤α-β-葡萄糖苷酶活性显著降低,微生物生长延缓。此外施肥显著增加了土壤微生物残体(necromass,以氨基糖含量为指标),其对土壤顽固性碳的贡献率达22.3%。本研究强调了土壤微生物代谢和残体对土壤稳定性有机碳固存的重要贡献。


研究背景:

土壤SOC是陆地生态系统中最大的C库,其动态变化直接影响全球C平衡。土壤C和氮(N)循环紧密耦合,并很大程度上受气候变化和人类活动的影响。长期施肥增加了土壤养分有效性,并显著地影响土壤C动态。尽管施肥具有增加土壤C储量的潜力,但就长期而言,土壤C稳定性取决于未来气候变化。土壤有机碳对长期施肥的响应程度和方向受温度和降水的影响。根据农业生态系统的长期野外观测和模型模拟,发现土壤养分和气候因子的交互影响决定了32%土壤有机碳的变异,并与微生物代谢、酶活性和残体微生物周转密切相关。

土壤微生物不仅能分解土壤有机质,还能代谢植物残体或通过合成代谢形成残体来稳定土壤C。微生物残体通常与土壤矿物质表面紧密结合而形成相对稳定的C。土壤微生物碳泵理论表明,微生物通过体外修饰(ex vivo modification)和体内周转(in vivo turnover)来调节土壤碳的积累。这意味着作为难降解C微生物代谢产物或残体对有机碳的贡献很大,而养分或易降解C的添加也可以长期增加土壤有机质。这一过程受到多因素环境变化的强烈影响。因此,需要进一步研究不同气候条件和长期施肥下微生物生理代谢和残体对土壤碳的贡献,以更好地理解农业土壤有机碳的积累和稳定性。


主要结果:

1. 施肥对不同气候条件下SOC数量与质量的影响

土壤移置12年后,在较温暖的气候条件下,SOC的损失显著减少(TransS2处理)(Fig. 1a)。施肥显著提高了TransS2处理下土壤顽抗性碳组分(RC)中的芳香C含量,其芳香度指数是Trans S2处理的2.7 Fig. 1a, b,表明了在温暖的气候条件下,施肥促进了腐殖化过程。对于土壤活性C组分(LC)而言,气候变暖条件下未施肥土壤中氧烷基C和羰基C降低,而施肥显著减缓了LC的损失。TransS2处理土壤在施肥后烷基/氧烷基C比率的降低(Fig. 1b)表明了施氮对易分解C的消耗具有潜在抑制作用。

不同气候条件下长期群落培养后微生物代谢及其残体介导的施肥对有机碳的影响

土壤移置12年后,不同气候条件下施肥对土壤有机碳及其分子群的影响a代表在不同气候条件下TransS1表示寒温带土壤移至暖温带;TransS2表示寒温带土壤移至亚热带)施肥对SOC以及其分子类群(烷基CO-烷基C,缩醛C,芳香C和羰基C)的影响;bA/O-A%%=烷基C峰面积(0-45 ppm/O-烷基C峰面积(45-90 ppm*100%,芳香性程度(%=芳香C峰面积(110-160 ppm/总峰面积(0-160 ppm*100%。图中******分别代表p < 0.05p < 0.01***p < 0.001


2. 活细菌群落和总微生物群落组成和结构的变化

施肥显著改变了不同气候条件下细菌群落的组成和结构(Fig. 2a, 增加活细菌α-多样性,降低总细菌α-多样性。与土壤地球化学属性的影响相比,施肥和气候因子(MATMAP)是改变活微生物群落结构和总微生物群落结构的主导因素(Table 1)。

不同气候条件下长期群落培养后微生物代谢及其残体介导的施肥对有机碳的影响

Fig. 活微生物和总微生物的群落组成及模块化分析。a代表活细菌群落和总细菌群落组成的比较,图中仅显示了相对丰度排名前十的细菌门,其他细菌门均表示为“其他门”;b基于随机森林模型,在活微生物和总微生物中排名前八的网络模块对土壤不稳定碳(LC)成分变化的贡献。


Table 1 微生物群落组成与土壤理化性质(pHSOCTNTPNO3--N, NH4+-N),气候条件变化和施肥之间Mantel及偏Mantel检验。

不同气候条件下长期群落培养后微生物代谢及其残体介导的施肥对有机碳的影响

         3. 活微生物/总微生物比与土壤易分解碳和顽固性碳之间的关系

随机森林模型中有5活微生物模块和3微生物模块对LC变化有显著贡献,解释率分别为60.4%44.9%Fig. 2b)。总微生物对RC的贡献率(78.81%)高于活微生物(70.69%) Fig. 2b)。


4. 活微生物对碳组分贡献的实验分析

通过Raman-D2O法研究了活细菌的代谢活性,确定其在土壤移植后的降解能力(Fig3)。采用不同的基质(淀粉和纤维素)以及D2O培养细菌,其培养物在2040~2300 cm-1范围内表现出明显的C -D拉曼谱带。以淀粉为C源的情形下, TransS1TransS2C-D/C-D + C-H)比值显著高于原位处理,而以纤维素为C源的情形下则趋势相反。

不同气候条件下长期群落培养后微生物代谢及其残体介导的施肥对有机碳的影响

Fig. 3 在施肥土壤中,以D2O同位素标记同时结合单细胞Raman光谱技术探究不同碳源培养条件下土壤微生物的代谢活性。左侧代表拉曼光谱,右侧代表 C-D比率(C-D/C-D+C-H))以及在50% D2O的无机盐+淀粉培养基中培养24h后土壤细菌的拉曼mapping图;b代表拉曼光谱,C-D比率以及在无机盐+纤维素培养基中培养的土壤细菌的拉曼mapping图;*****分别代表p < 0.01p < 0.001

施肥显著降低了TransS2中土壤α-β-葡萄糖苷酶活性(Fig. 4a)。通过接种土壤悬浮液测试活体微生物对不同C淀粉和纤维素分解能力的实验显示施肥显著降低了淀粉和纤维素分解所产生的CO2Fig. 4b),这表明施肥减少了TransS2土壤不稳定碳和稳定碳的损失。此外,分别绘制了活细菌在淀粉和纤维素中的生长曲线Fig. 4c。在较温暖的气候条件下,施肥土壤中细菌的生长活性低于未施肥土壤。特别是在淀粉碳源的情况下,施肥土壤中的细菌加速进入稳定期,而未施肥土壤中的细菌持续生长。

不同气候条件下长期群落培养后微生物代谢及其残体介导的施肥对有机碳的影响

Fig. 不同气候条件下施肥对不同碳源的土壤微生物代谢能力和生长的影响。a代表土壤酶活性(α-和β-葡萄糖苷酶);b代表微生物降解淀粉和纤维素能力的微环境实验;c代表以淀粉和纤维素为C源培养条件下活的土壤微生物的生长曲线(n=9)。


         5. 基于氨基糖分析探究微生物残体对SOC 的贡献

TransS2处理下,施肥显著增加微生物残体含量Fig. 5a。土壤移置12年后,微生物死生物质的积累增加。采用偏RDA方法估算了土壤中活体微生物和死微生物以及土壤地球化学属性对LCRC组分的贡献(Fig. 5b):活细菌对LC组分的贡献率为30.9%,远高于死微生物对LC组分的贡献率(1.1%)。死亡微生物对RC组分的贡献率为22.3%,高于活微生物(6.4%),表明了微生物残体可能是土壤RC的主要贡献者。

基于微生物 C泵理论,微生物代谢产物或残体可以对RC-SOC有很大的贡献,这强调微生物在碳吸存过程中的调节作用。本研究构建了一个概念框架,以揭示在氮缺乏和充足的情况下,微生物生理代谢和残体调控SOC吸存的潜在作用机制(图6)。在温暖气候条件下,施肥可通过促进微生物残体的积累来补充土壤中的顽固性碳(芳香族C),同时降低活微生物对不稳定的C组分的消耗来增加土壤C吸存。

不同气候条件下长期群落培养后微生物代谢及其残体介导的施肥对有机碳的影响

Fig. 5 微生物死生物质对土壤SOC的贡献。a代表作为微生物残体生物标志物的土壤氨基糖含量,包括来自死真菌的氨基葡萄糖和来自死细菌的氨基半乳糖和胞壁酸,大写字母表示不同气候条件下施肥效应具有显著差异,小写字母表示原位与移栽之间具有显著差异;b代表土壤地球化学性质、活细菌生物量和细菌氨基糖含量对土壤LCRC影响的偏冗余分析(pRDA)。

不同气候条件下长期群落培养后微生物代谢及其残体介导的施肥对有机碳的影响

Fig. 6不同气候条件下施肥与非施肥土壤微生物对有机碳分子群的潜在调控机制示意图。上图中土壤颜色梯度反映了LCRC分量的变化,高度代表了SOC的含量。左下图表示了不同气候条件下氮素限制或充足对微生物SOC代谢的影响机制。在不施肥的情况下,由于氮素的限制,植物和微生物可能会发出更强的氮饥饿信号,微生物产生更多的胞外酶分解有机碳以获得氮源。此外,氮素缺乏减少了植物根系分泌物(易于降解的碳源)的输入,增温加速了土壤中不稳定碳的消耗,进一步刺激了土壤中微生物呼吸对稳定碳的利用,导致土壤有机碳的减少。在施肥情况下,土壤微生物残体的增加补充了土壤不稳定碳,低氮饥饿信号降低了微生物对土壤稳定碳的消耗。


不同气候条件下长期群落培养后微生物代谢及其残体介导的施肥对有机碳的影响

  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 03 - 14
    栢晖,第三方专业科研检测机构2025年3月8日下午13点,栢晖生物举行了一年一度的“安全日”活动。本次活动分为“安全知识培训”和“消防实操演练”两个环节,旨在进一步提升全员安全意识和应急处置能力。活动伊始,总经理杨锦兀发表讲话,介绍了举办“安全日”活动的初心与意义,并强调实验室安全对企业和员工的重要性。他指出,只有将安全理念内化于心、外化于行,才能保障科研工作的有序开展。在随后的安全知识培训中,实验室张副经理围绕灭火器使用、试剂管理、气瓶安全和现场应急处理等内容进行了系统讲解。张副经理结合真实案例,深入浅出地讲解了灭火器的正确操作步骤、火灾应对要点,以及实验室试剂的分类、存储和废弃处理规范等。通过图示和现场互动,全体员工对安全操作有了更清晰、更全面的认识。消防演练环节中,张副经理现场示范灭火器的正确使用方法,并组织员工逐一进行实操训练。通过动手演练,大家切实掌握了应急灭火技能,提升了面对突发状况的应对能力。安全,是科研顺利推进的前提,也是企业可持续发展的保障。栢晖生物始终坚持“安全第一、预防为主”的原则,持续夯实安全管理基础,营造更加安全、高效的实验环境。
  • 点击次数: 0
    2025 - 03 - 05
    文献解读原名:Multitrophic interactions support belowground carbon sequestrationthrough microbial necromass accumulation in dryland biocrusts译名:多营养级相互作用通过微生物残体积累以支持干旱生物结皮中土壤碳封存期刊:Soil Biology and BiochemistryIF:9.8发表日期:2025年1月第一作者:石佳 中国农业大学 博士研究生通讯作者:王祥 中国农业大学 教授1背景土壤有机碳(SOC)是全球最大的陆地有机碳库,估计有1500-2400 Pg。SOC在调节全球碳储量和通量方面发挥着重要作用。土壤微生物被视为土壤碳动态的主要调节因子。一般来说,微生物通过分解减少SOC库存,同时通过形成微生物生物量和稳定坏死残留物来促进稳定的碳库。最近对土壤生物标志物的全球评估表明,微生物尸体占SOC库的50%,而活微生物生物量不到5%。因此,需要深入了解控制微生物生命和死亡过程的机制,以揭示全球碳循环的复杂性,并制定有效的土壤管理策略。如生物物理特征、细胞化学组成和生活史等,影响土壤有机物循环与微生物残体碳(MNC)积累。碳利用效率(CUE)衡量转化为微生物生物量的有机碳占比,反映土壤有机碳(SOC)平衡,与 MNC、SOC 的关系存争议。竞争、互利共生和捕食等生物相互作用,影响微生物残体形成与性质。土壤微生物是食物网基础,种间竞争和高营养级捕食影响其存亡与生物量向残体的转化。营养级内和级间的相互作用,会影响 MNC 积累与 SOC 。2提出假设(1)多个营养级类群会介导土壤微生物残体碳的积累。(2)营养级内的资源竞争和跨营养级的掠食性捕食,都可能导致土壤碳更高效地分解,以及微生物残体积累减少。3材料与方法(1)研究区域位于中国西北部陕西省神木市...
  • 点击次数: 0
    2025 - 03 - 01
    栢晖生物成立于2014年,致力于为生态、农业、林业等科学研究领域提供专业的检验检测服务。公司总部位于成都市成华区四川检验检测创新科技园,实验室规模近3000平,拥有成熟、完善的实验室管理体系。01招聘岗位概览01技术支撑(3人,6-15k)岗位要求:1.生态学、农学、土壤学、林学、草学、环境工程专业硕士,接受应届生;2.有相关实验经验(氨基糖,木质素酚,土壤酶活,有机酸检测,磷组分,PLFA,微生物碳氮磷,有机氮组分等),对于常规实验方法熟悉;3.熟悉相关实验室仪器设备(如:TOC仪,元素分析仪,液相等),了解并掌握相关实验数据的分析能力;4.性格外向,沟通能力强,能适应偶尔出差;岗位职责:1.项目前期对接(回复技术咨询,实验方案确认等);2.监督项目进度(与实验室对接检测要求,监督实验进度、确认实验数据);3.项目后期处理(追踪数据发放,协助处理项目结算等相关问题)。工作地点:成都02品牌经理(9人,6-15k)岗位要求:1、生态学、农学、土壤学、林学、草学、环境工程专业本科及以上学历,23及24届研究生优先,优秀25届亦可;2、有相关实验经验(氨基糖,木质素酚,土壤酶活,有机酸检测,磷组分,PLFA,微生物碳氮磷,有机氮组分等),对于常规实验方法熟悉;3、性格外向,沟通能力强,能适应出差;4、工作踏实,自律性和执行能力强,具有积极进取的精神和不断学习的态度;5、有第三方检测机构相关经验者优先考虑。岗位职责:1、负责所在区域高校和企业市场的开拓推广工作,进入高校开展线下讲座、企业宣讲等活动;2、定期拜访高校和企业相关重点客,通过邮件、直播讲座、电话及微信等与需求客户维持良好的检测合作关系;3、主动学习各种专业知识,关注行业动态及政策;4、负责完成上级领导布置的业绩目标和工作目标;工作地点(驻点城市):北京 广州 南京 杭州 昆明 西安 长沙 沈阳 福州03项目管理(3人,...
  • 点击次数: 0
    2025 - 02 - 13
    木质素酚的来源木质素是土壤有机碳的重要组成部分,具有芳香单元的三维立体结构, 化学稳定性高,未经分离或化学转化,现有的分析技术很难对其进行直接定量分析。分子标志物的方法是目前用于测定土壤木质素含量和组成较为普遍的方法,即用木质素酚类化合物的含量,对木质素的含量及有机质来源进行指示。目前常用的处理方法是碱性氧化铜裂解出小分子单体,通过LC-DAD、LC-MS、GC-FID和GCMS测定。目标物质分类及应用意义香草基酚系列(V):香草酸、香草醛、香草乙酮丁香基酚系列(S):丁香酸、丁香醛、乙酰丁香酮肉桂基酚系列(C):对-香豆酸、阿魏酸对羟基酚系列(P):对羟基苯甲酸、对羟基苯甲醛、对羟基苯乙酮样品处理方法方法原理:土壤样品中木质素通过碱性氧化铜在高温下水解成单环酚盐类,调节pH=1,用液液萃取提取出酚类单体,经双(三甲基硅烷基)三氟乙酰胺(BSTFA)衍生,用GCMS分离检测,以保留时间和质谱特征离子定性,内标法定量。操作步骤:称0.5-1.0g(精确至0.0001g)样品于反应釜,加1.0g氧化铜和0.1g硫酸亚铁铵,混匀。加10mL氢氧化钠(2mol/L),氮气置换釜内空气15min,170 ℃ 水解3h,加40ug内标,转移,离心,固液分离,10mL超纯水分两次清洗沉淀,合并上清液。1+1盐酸调pH=1,暗处放置1h,离心,固液分离,0.1molL盐酸清洗沉淀两次,合并上清液。提取液加2g氯化钠,混匀,用30mL乙酸乙酯分3次萃取,收集合并有机相,过无水硫酸钠除水。40 ℃氮吹至干燥,加100uL吡啶和400uLBSTFA,70℃下反应3h,上机测定。校正曲线:取适量木质素酚标准使用液,加入到预先装有1mL乙酸乙酯的衍生瓶中,加40ug内标,配制成系列标准溶液,40 ℃下氮气吹干,衍生。数据计算及分析定性方法:通过样品中目标物与标准系列中目标物的保留时间、质谱图,碎片离...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
官方热线:028 8525 3068
投诉电话:18181920125
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务