028-8525-3068
新闻动态 News
News 行业新闻

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

日期: 2021-08-20
标签:

标题:Soil carbon persistence governed by plant input and mineral protection at regional and global scales

论文idhttps://doi.org/10.1111/ele.13723


原名:Soil carbon persistence governed by plant input and mineral protection at regional and global scales

译名:区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

期刊:Ecology Letters

IF:8.665

发表时间:2021.03.11

第一作者:陈蕾伊

通讯作者:杨元合

主要单位:中国科学院植物研究所


摘要

阐明影响土壤有机质(SOM)持久性的潜在过程是预测土壤碳-气候反馈的前提。然而,大地理尺度上植物碳(C)输入调控多层土壤SOM存留的潜在作用仍然不清晰。基于在青藏高原开展的大尺度土壤放射性碳(Δ14C)测定,我们发现尽管表土层Δ14C与气候、矿物性质和SOM化学组成有重要的联系,植物C输入是造成表层土壤C不稳定的主要贡献者。与之相反,铁铝氧化物和阳离子的矿物保护在深层土壤SOM留存中更为重要。这些区域性的观测结果得到了全球土壤放射性碳数据库(ISRaD)的全球整合结果的证实。我们的研究结果阐明了植物C输入对不同土壤层SOM持久性的差异化影响,为模型更好地预测变化环境下多层土壤的C动态提供了新见解。


研究背景

土壤是陆地生物圈中最大的碳储量,在全球碳循环中具有举足轻重的地位。土壤碳的微小损失也可能强烈地影响大气二氧化碳(CO2)浓度,并触发对气候变暖的潜在正反馈。由于对土壤SOM的稳定和不稳定机制认识不足,有关土壤C命运的预测模型仍然存在很大不确定性。曾有报道表示地球系统模型高估了土壤C周转率超过6倍,部分原因是这些模型缺乏对SOM稳定机制的完整描述。因此,要准确预测土壤C动态及其对气候变暖的潜在反馈,就必须深入了解大地理尺度上SOM持久存在的潜在机制。

放射性碳(14C)是研究不同时间尺度碳动力学的有效工具。土壤放射性碳含量已被广泛认可用以表征SOM持久性。基于14C,先前的研究已经提出了影响SOM稳定或不稳定的多种因素。其中,气候通常被视为一个重要的调控因素,例如,冻结温度和水淹条件有助于SOM的长期储存。除了气候调节外,由于SOM内在的化学顽抗性,SOM性质也可以通过选择性保护来调节土壤C动态,并且矿物-有机复合体的形成能抑制SOM分解。此外,以凋落物和根际沉积物形式的植物C输入会诱导激发效应(植物C输入驱动微生物对SOM的消耗),可能不利于SOM的长期留存。然而,与前三个因素相比,在广泛的地理尺度上,植物C输入在调节SOM持久性中的潜在作用仍不清楚。植物C输入的潜在作用和其他因素的交互作用可能会沿着土壤剖面发生变化,而目前缺乏关于探索植物C输入在不同土壤深度以及与其他因素之间的相对重要性的实证研究。


研究内容

本研究利用青藏高原2200km草原样带30个采样点的样品,测定了土壤表土(0-10cm)和底土(30-50cm)的放射性碳含量。为了探索广泛地理尺度上SOM持久性的主要驱动因素,我们综合了气候和植物C输入数据,并测定了与两层土壤矿物保护和SOM化学组成相关的变量。利用国际土壤放射性碳数据库(ISRaD)的数据,我们进一步评估了全球范围内SOM持久性的土壤深度依赖调控的普遍性。我们假设两个土层对SOM储存的主要控制因素可能不同,气候和植物C输入主导了表土,而底土则受矿物保护主导。


主要结果

01
土壤Δ14C的空间格局及其控制因素

土壤Δ14C在两个土层间表现出明显的空间分布格局。

表层土壤 Δ14C值由青藏高原东部向西部呈下降趋势 (图.1a)。同样地,表土的植物C输入和SOCD也表现出从东向西的下降趋势(图.1c、e),而连二亚硫酸根萃取的 Fe/Al 和可交换的 Ca2+ 与 SOC和HIX 的摩尔比则表现出由东向西上升的趋势(图.c,、e)。结果表明,Δ14C值较高的土壤,植物C输入量和SOCD输入量较高,而矿物保护和腐殖化SOM较低。

底土Δ14C范围为−573.5‰至−41.3‰(图.1b),平均比表土低7倍。此外,与表土相比,底土Δ14C没有表现出明显的空间模式。底土Δ14C仅与Fe+ Ald和SOC、和HIX的摩尔比呈负相关。底土Δ14C与植物C输入或土壤 SOCD无显著相关性(图. 1g、h)。

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

1.青藏高原草地土壤放射性碳丰度的空间分布(Δ14C,a-b),植物C输入(c-d)和土壤SOC密度(SOCD,e-f)及其与表土和底土中Δ14C(g-h)的关系。表土的植物C输入量估计为地上净初级生产力(ANPP)和分配到0-10cm(BNPP0-10)的地下净初级生产力之和;底土的植物C输入估计为30–50 cm(BNPP30-50)的BNPP。背景图代表了整个研究区域的海拔高度。


02
区域和全球尺度上对土壤Δ14C主导控制

前面所涉及的四种因素和土壤Δ14C有着显著相关性,但控制植物特性的作用后,表层土壤Δ14C与气候、矿物性质和SOM成分的相关系数分别下降了87.8% 、68.4% 和115.0% (图. 2a)。相比之下,植物特性,尤其是NDVI和EVI,总是与表土Δ14C显著相关,即使是在控制了其他三种因素的情况下也是如此。与表土相反,底土Δ14C仅与矿物性质和HIX显著相关。此外,Feo+Alo和Mgexe与SOC的摩尔比是与底土Δ14C显著相关的唯二变量,即使是在控制了气候、植物C输入和SOM化学成分的作用后(图. 2b)。


 区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

2. 土壤放射性碳丰度的偏相关分析(Δ14C)以及导致表土和底土中SOM稳定和不稳定的四种因素。最外圆表示与土壤相关的因子(即气候(CL)、植物C输入(PL)、矿物保护(MI)和SOM化学组成(CO)与Δ14C的相关性检验。



图3a的SEM分析表明,植物C输入是最终模型中的单一直接控制,对表土Δ14C有较强的正效应。气候通过对植物C输入的正效应对表土Δ14C实现间接控制。相应地,图3b的SEM分析表明Δ14C主要直接受矿物性质控制,而气候和植物C输入对土壤Δ14C空间变异的影响较小。

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

3结构方程模型(SEM)揭示了气候、植物C输入、矿物保护和SOM化学组成对土壤放射性碳丰度的直接和间接影响(Δ14C)及其标准化的直接和间接影响(a)表土的SEM和(b)底土的SEM。单头箭头:因果关系的假设方向;红色和蓝色实心箭头:积极和消极的关系;灰色虚线箭头;不重要的关系;红色和蓝色箭头的宽度与关系的强度成正比;箭头旁的数字;标准化路径系数。


全球综合结果显示,表土Δ14C与植物C输入(图. 4a-d)和气候因子(图. 4a-d)紧密相关。与气候和植物C输入相比,矿物质与SOC的比值与深层土壤中的Δ14C密切相关(图. 4e–h)。这些结果强调了在青藏高原草原上观测到的土壤碳持久性的深度依赖控制可以推广到全球范围。

区域和全球尺度上土壤碳持久性受植物输入和矿物保护影响

4全球范围内的表土(绿点)和深层土壤(橘色)中土壤碳丰度(Δ14C)与植物C输入和矿物保护的相关性。植物C输入变量包括(a)标准化植被指数(NDVI),(b)增强植被指数(EVI),(C)叶面积指数(LAI)和(d)净初级生产力(NPP)。矿物保护变量包括(e)dithionite-extractable连二亚硫酸钠可提取铁(Fed),(f)草酸盐可提取铁(Feo),(g)连二亚硫酸钠可提取铝(Ald)和(h)草酸盐可提取铝(Alo)与SOC的摩尔比。


总结

本研究区域观测的结果和全球综合结果一致地证明,土壤层之间土壤碳持久性的主要决定因素是不同的。首次量化了植物C输入相对于其他因素的相对重要性。尽管表土Δ14C与多种因素显著相关,但植物C输入主要控制表层土壤碳的长期储存,而矿物保护则主要在底土起作用。本研究利于加深对环境变化下土壤C动态的了解,有助于C-气候反馈模型的完善。

  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 20
    一、试剂药品浓盐酸,氢氧化钠,氯化钡,酚酞二、试剂配制2.1.0.05mol/l盐酸:取4.16ml浓盐酸缓缓加入1000mlUP 水中。2.2.0.1mol/l氢氧化钠:0.4g氢氧化钠用UP水定容至100ml。2.3.酚酞指示剂:称取0.5g酚酞,用95%乙醇溶解定容至100ml。2.4.11mol/l氯化钡溶液:20.82g氯化钡用UP水定容至100ml。三、洗涤方法所有新的玻璃器皿:用洗涤剂清洗干净后,再用自来水洗,再超声,再用UP水冲洗,再放入90度烘箱烘干。四、实验方法4.1 土壤预培养:称取适量土壤样品置于常温下预培养数天,使土壤恢复到常温状态。4.2 密闭培养:将恢复到常温状态的样本,称取10g置于250ml广口具塞瓶中,内置盛有10ml0.1mol/l氢氧化钠溶液的小玻璃瓶,用蒸馏水调节土壤湿度至其最大持水量的60%,5℃恒温培养7天。4.3 测定:培养结束后取出里面盛氢氧化钠的小玻璃瓶,先加入2ml氯化钡溶液,再加入2滴酚酞指示剂,再用0.05mol/l的盐酸滴定至红色消失,记录滴定体积,计算出CO2的释放量,同时做空白对照(空白用水代替)。更多检测相关讯息so栢晖生物了解~
  • 点击次数: 0
    2024 - 09 - 12
    1、试剂柠檬酸(AR) 柠檬酸三钠(AR) 无水甲醇(AR) 三氯甲烷(AR) 丙酮(AR) 甲苯(AR) 氢氧化钾(AR) 冰乙酸(AR) 正己烷(色谱纯) 十九烷酸甲酯(19:0)2、仪器气相色谱仪 冻干机 振荡仪 过柱装置 水浴锅 水浴氮吹仪 干式氮吹仪 高速离心机3、材料高速离心管 试管(100 mL、5 mL) 10 mL具塞试管 3 mL硅胶柱 玻璃滴管(可拆卸橡胶头)黑色塑料袋 玻璃量筒(1 mL、5 mL) 移液器(5 mL、1 mL、100 μL)4、试剂制备柠檬酸缓冲液:称取柠檬酸37.5 g,柠檬酸三钠44.1 g,溶于1 L超纯水中。提取液:依次加入柠檬酸缓冲液64 mL、无水甲醇160 mL、三氯甲烷80 mL,混合均匀。(现用现配,低温隔夜会析出盐)。甲醇甲苯混合溶液(1:1):15 mL无水甲醇、15 mL甲苯混合均匀(现用现配)。0.5 mol/L KOH溶液:称取28.05 g KOH,溶于1 L超纯水中。0.2 mol/L KOH甲醇溶液(2:3):取0.5 mol/L KOH溶液40 mL,溶入60 mL无水甲醇。1 mol/L冰乙酸溶液:取1.74 mL冰乙酸,溶入30 mL去离子水。5、样品处理土样冻干:称取土壤4.00 g(沙土8.00g)于高速离心管中,冰冻过夜,随后放入冻干机冻干。土壤含水率测定:称取土壤5.00 g于105 ℃下烘干3 h,随后冷却至室温,取出称重,计算含水率。6、测定6.1取出冻干土样,加入23ml提取液,避光振荡2h;6.2离心取上清液,重复步骤1 ,合并两个上清液;6.3依次加入三氯甲烷、柠檬酸缓冲液,避光过夜;6.4去除上清液,吹干三氯甲烷;6.5过柱;6.6吹干无水甲醇,用甲醇甲苯溶液、KOH甲醇溶液复溶,水浴,冷却至室温;6.7加入去离子水、冰乙酸...
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务