标题:Permafrost nitrogen status and its determinants on the Tibetan Plateau
论文id:https://doi.org/10.1111/gcb.15205
原名:Permafrost nitrogen status and its determinants on the Tibetan Plateau
译名:青藏高原多年冻土氮素状况及其决定因素
期刊:Global Change Biology
IF:10.863(2020)
发表时间:2020年6月7日
第一作者: Chao Mao
通讯作者:杨元和
主要单位:中国科学院大学,中国科学院植物研究所
摘要:
It had been suggested that permafrost thaw could promote frozen nitrogen (N) release and modify microbial N transformation rates, which might alter soil N availability and then regulate ecosystem functions. However, the current understanding of this issue is confined to limited observations in the Arctic permafrost region, without any systematic measurements in other permafrost regions. Based on a large-scale field investigation along a 1,000 km transect and a laboratory incubation experiment with a 15N pool dilution approach, this study provides the comprehensive evaluation of the permafrost N status, including the available N content and related N transformation rates, across the Tibetan alpine permafrost region. In contrast to the prevailing view, our results showed that the Tibetan alpine permafrost had lower available N content and net N mineralization rate than the active layer. Moreover, the permafrost had lower gross rates of N mineralization, microbial immobilization and nitrification than the active layer. Our results also revealed that the dominant drivers of the gross N mineralization and microbial immobilization rates differed between the permafrost and the active layer, with these rates being determined by microbial properties in the permafrost while regulated by soil moisture in the active layer. In contrast, soil gross nitrification rate was consistently modulated by the soil NH4+ content in both the permafrost and the active layer. Overall, patterns and drivers of permafrost N pools and transformation rates observed in this study offer new insights into the potential N release upon permafrost thaw and provide important clues for Earth system models to better predict permafrost biogeochemical cycles under a warming climate.
尽管已有研究表明,多年冻土融化可以促进冻土氮素释放,改变微生物氮转化速率,从而改变土壤氮素有效性,最后调节生态系统功能。然而,目前对这一问题的认识仅限于北极永久冻土区的有限观测,没有对其他永久冻土区进行任何系统的测量。本研究基于1000 km样带的大规模野外调查和15N库稀释法的室内培养试验,对青藏高山多年冻土区冻土的氮素状况进行了综合评估,包括速效氮含量及其转化速率。结果表明,青藏高原多年冻土层的速效氮含量和净氮矿化速率均低于活跃层。此外,多年冻土层的氮素矿化、微生物固定和硝化速率均低于活跃层。我们的研究结果还表明,主导冻土和活跃层总氮矿化和微生物固定化速率的驱动因素不同,冻土层的速率主要取决于冻土微生物特性,而活跃层的速率主要取决于其土壤水分。相反,土壤总硝化速率始终受到冻融和活跃层土壤NH4+含量的调节。总体而言,本研究观察到的多年冻土N库和转化率模式和驱动因素为研究多年冻土融化后潜在的N释放提供了新的视角,并为地球系统模型更好地预测气候变暖下冻土生物地化循环提供了重要思路。
关键词:
climate warming, frozen nitrogen, nitrogen availability, nitrogen cycle, nitrogen transformation rates, permafrost thaw
气候变暖,冻土氮,氮素有效性,氮素循环,氮素转化率,冻土融化
前言:
气候变暖导致了大范围的永冻土融化,这可能引发相当数量的永冻土氮(N)释放,并进一步引发两个生态后果。首先,土壤氮有效性的增加可以促进植物对氮的吸收,提高生态系统的产量。其次土壤有效氮含量升高容易通过硝化和反硝化过程以硝酸盐淋失以及氮氧化物排放的形式损失。因此,更好地了解多年冻土融化过程中土壤氮素的释放及其驱动因素,对于预测这些深层土壤氮去向及其对多年冻土影响地区生态系统功能的影响具有重要意义。而目前的研究主要集中在两个关键参数上,即冻融冻土中速效氮含量和土壤氮素转化速率,这些研究表明,永久冻土融化可能导致释放大量有效氮。
尽管人们对多年冻土N释放的关注越来越多,但我们的认识仍然受到以下两个方面的限制。首先,由于缺乏区域尺度的系统观测,目前还不清楚N转化速率的主导驱动因素是否在两个土层之间有所不同。第二,以前的研究主要局限于北极多年冻土区,对其他永久冻土区的研究很少,如占北半球冻土面积75%的青藏高原。
研究内容:
本研究于2016年在青藏高原进行了大规模的野外采样活动,调查了青藏高原多年冻土区的24个样点。在此基础上,测定了多年冻土和活动层土壤有效氮的含量,包括无机氮(NH4+和NO3−)和有机氮(DON)。还测定了土壤净氮和总氮的转化率,以及两个土层中相关的生物和非生物驱动因素。通过进行这些测量,我们旨在解决以下三个问题:(A)永冻层的有效氮含量是否高于活动层?(B)融化的多年冻土是否具有比活跃层更高的净氮和总氮转化速率?(C)土壤氮素转化速率的主导驱动因素在多年冻土层和活跃层之间是否存在差异?
主要结果:
土壤速效氮含量在冻土层和活跃层之间存在显著差异(图1),土壤DIN和DON含量较低,分别约占活动层的59.7%和14.4%。土壤DIN在多年冻土层和活动层中均以为NH4+主,分别约占97.6%和94.7%。同样,冻土层和活跃层之间的土壤氮转化速率也存在显著差异。冻土层的总氮矿化速率、微生物固定化速率和硝化速率均低于活跃层(图2),比例分别为15.6%、10.7%和9.2%。与总速率相似,冻土中氮矿化和硝化的净速率也低于活动层(图3)。
图1 冻土样带24个采样点土壤NH4+-N(a)、NO3--N(b)、溶解无机N(DIN,c)和溶解有机N(DON,d)含量差异的空间变化。
图2 冻土样带的24个采样点冻土层和活动层土壤之间的总氮矿化率(GNM,a)、微生物固持速率(MIM,b)和总硝化速率(GN,c)差异的空间变化。
图3 冻土样带24个采样点冻土层与活动层土壤净氮矿化速率(NNM,a)和净硝化速率(NN,b)差异的空间变化。
土壤氮素转化速率(净氮转化速率/总氮转化速率)与潜在驱动因子(生物因子和非生物因子)之间存在显著关系。同样,在冻土中,总氮转化速率与上述大多数变量之间也存在显著的相关性,但总氮转化速率与沙粒含量以及总硝化速率与AOB丰度之间没有显著的相关性(图4)。活跃层和冻土层土壤氮素转化速率受不同因素的调控。具体地说,活跃层的氮矿化和微生物固定的总速率主要受土壤水分控制(图5a,b),而冻土中的氮矿化和微生物固定速率主要受微生物特性的调节(PLFA总量和真菌/细菌比;图5d,e)。
图4 活性层和冻土层土壤中生物和非生物变量解释的总氮矿化(a)、微生物固定化(b)和总硝化(c)速率的比例。
图5 活动层和冻土层土壤中总氮矿化(a,d)、微生物固定(b,e)和总硝化(c,f)速率的变异分割分析结果。
结论
本研究首次尝试揭示了青藏高原多年冻土中有效氮库和转化速率的大尺度模式和驱动因素(图6)。本研究观察到多年冻土中的DIN(NH4+,NO3−)和DON含量以及净氮/总氮的转化率始终低于活动层。研究还发现,多年冻土和活跃层的氮素矿化和微生物固定的总速率受不同因素的影响,其中微生物特性(微生物生物量和真菌:细菌比)在多年冻土中占主导地位,而土壤水分在活跃层中起着最重要的作用。而总硝化速率主要受冻土和活跃层土壤NH4+含量的影响。