028-8525-3068
新闻动态 News
News 行业新闻

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

日期: 2021-08-20
标签:

原名:Absorptive and transport roots differ in terms of their impacts on rhizosphere soil carbon storage and stability in alpine forests

译名:高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

期刊:Soil Biology and Biochemistry

IF: 7.609

发表时间:2021.08.10

第一作者:汪其同

通讯作者:尹华军

主要单位:中国科学院成都生物研究所

摘要:

根据木本植物细根形态、生理和功能特征的内在差异,可将其分为吸收根和运输根两个功能模块。不同功能模块的根系对土壤生物地球化学过程的潜在生态效应已被广泛认识。然而,由这两个根系功能模块驱动的根际土壤碳储量的大小以及碳稳定机制尚不清楚。在本研究中,我们量化了云杉人工林矿质层(0-15cm)吸收根和运输根根际土壤有机碳含量和组分,进一步通过数值模型估算了两个根系功能模块不同根际范围土壤C储量。同时,通过分析根际土壤有机碳化学特征和金属-有机复合体特征,区分两个根系功能模块对根际土壤有机碳稳定性的差异化影响。结果表明,吸收根根际土壤有机碳含量比运输根根际高15.7%,这主要是由于吸收根根际土壤有机碳的稳定性(化学抗性和金属-有机键)更强。数值模型分析表明,吸收根根际有机碳库(0.27 ~ 2.7 kg C/m2)是运输根根际(0.18 ~ 1.36 kg C/m2)的2倍。在根际1 mm范围,吸收根根际土壤有机碳储量对根际土壤有机碳总储量的贡献(63.5%)远高于运输根根际(36.5%)。上述结果表明,吸收根在高寒针叶林根际土壤碳中发挥主导作用。本研究强调基于功能的细根分类与根际土壤碳储量结合运用于陆地表面土壤碳循环模型中具有重要意义,可为准确预测高寒针叶林生态系统土壤碳动态提供科学依据。


研究背景:

土壤有机碳(SOC)的形成、稳定和周转等动态变化过程已经成为当前生态学和土壤学领域亟需解决的核心科学问题之一。根系在调控土壤碳动态中的重要作用已经得到广泛认可,并在很大程度上取决于根系功能属性特征。具体而言,作为一个高度复杂且功能异质的分支系统,根系生理代谢活性在吸收根和运输根之间具有明显差异,从而导致根际SOC固存和稳定性在不同根系功能模块间呈现出高度的异质性特征。但是,现有的根际模型和实验研究大多将根际区简单视为一个均一体,很少考虑根系生命活动诱导的根际土壤碳动态在根系功能属性分化上的变异,极大地限制了在细微尺度上对森林生态系统土壤碳固存和稳定性机制的全面认识与理解,加剧了对根际土壤碳储存和持久性的评估和预测的复杂性。

研究内容:

本研究以我国西南地区一个75年的云杉(Picea asperata)人工林为研究对象,通过分离吸收根和运输根两个功能模块并采集相应的根际土壤(图1),评估了根际土壤碳含量在两个根系功能模块之间的差异,并估算了它们对根际土壤有机碳库的相对贡献。通过对土壤化学特征(C官能团和MOC含量)的表征,区分了两个根系功能模块间根际土壤有机碳稳定性的差异。鉴于根系对土壤有机碳动态的“双刃剑”效应(即对土壤有机碳储存和稳定的正或负影响),我们假设,由于根系C输入数量和质量的内在差异,吸收根和运输根会对根际有机碳储量和稳定性产生不同的影响。

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图1野外采样点布置示意图(A)、细根功能模块分离及根际土壤采集流程图(B)

主要结果:

1)吸收根和运输根根际SOC浓度和组分差异

两个根系功能模块对根际SOC浓度和组分的影响存在差异。吸收根根际土壤有机碳浓度比运输根高15.7% (表1)。两个根系功能模块根际有机碳中惰性C组分的比例均超过总有机碳的50%(表1),且吸收根根际显著高于运输根根际,而活性C组分的百分比表现出相反趋势。


表1 吸收根和运输根根际SOC浓度以及活性碳和惰性碳占比

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

2)SOC稳定性的化学指标

吸收根的根际alkyl-C的比例比运输根根际高17.9%,而O-alkyl-C的比例降低了2.2%(表2)。吸收根根际SOC的疏水性指数和芳香性指数分别比运输根根际高13.33%和33.3%。与运输根根际相比,吸收根根际MOC中Fe和Al离子的含量分别高33.3%和41.6% (图2)。


表2 吸收根和运输根根际SOC的官能团特征

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性


高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图2 金属有机复合体中Fe和Al离子浓度


3)根际SOC含量和SOC稳定性的关系

Pearson相关分析表明,土壤有机碳的化学保护对根际土壤有机碳含量有一定影响。各有机碳组分中,根际有机碳含量与惰性C含量的相关性最强(图3)。根际土壤有机碳含量随有机碳化学保护程度的增加而增加。其中,根际土壤有机碳浓度与alkyl-C比例、SOC的疏水性和芳香性、Fe-MOC含量和Al-MOC呈显著正相关关系,但与O-alkyl-C比例呈显著负相(图3)。

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图3 SOC浓度与SOC理化特性间的Pearson相关系数矩阵。


4)基于模型估算的吸收根和运输根根际SOC储量

吸收根单位面积根长显著高于运输根,根直径则呈相反趋势;结果导致吸收根对根际土壤体积的贡献率高于运输根(表3)。在距离根表面0.5 mm处,吸收根的根际土壤体积比运输根高33.8%。当根际范围扩大到2mm时,两个根功能模块的根际土壤体积差异增加到74.8%(表3)。

除根际土壤体积和SOC含量外,数值模型估算的根际土壤有机碳储量在两个根系功能模块间也存在显著差异。各模拟根际范围下,吸收根根际土壤有机碳储量(0.27 ~ 2.7 kg C/m2)显著高于运输根根际(0.18 ~ 1.36 kg C/m2)。在0.5 ~ 2 mm的根际范围内,吸收根根际SOC库占根际SOC总量的60%以上,且随根际范围的增加而增加(60.1% ~ 66.4%);吸收根根际有机碳库是运输根根际有机碳库的1.51 ~ 1.98倍(图4)。

表3 吸收根和运输根根际土壤体积

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图4 吸收根和运输根根际SOC储量

结论:

本研究发现吸收根和运输根对森林根际土壤碳储量的调节作用不同。总的来说,吸收根根际土壤碳储量几乎是运输根根际的两倍,这主要是因为吸收根根际土壤有机碳的稳定性较高(图5)。随着根际范围的增加,吸收根对根际土壤碳库贡献的主导作用逐步增强。本研究为理解森林生态系统根系在土壤碳动态中的重要作用提供了新的视角。

高寒森林吸收根和运输根差异化调控根际土壤碳储量和稳定性

图5 吸收根和运输根差异化调控根际SOC储量和稳定性的概念框架图



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 09 - 12
    1、试剂柠檬酸(AR) 柠檬酸三钠(AR) 无水甲醇(AR) 三氯甲烷(AR) 丙酮(AR) 甲苯(AR) 氢氧化钾(AR) 冰乙酸(AR) 正己烷(色谱纯) 十九烷酸甲酯(19:0)2、仪器气相色谱仪 冻干机 振荡仪 过柱装置 水浴锅 水浴氮吹仪 干式氮吹仪 高速离心机3、材料高速离心管 试管(100 mL、5 mL) 10 mL具塞试管 3 mL硅胶柱 玻璃滴管(可拆卸橡胶头)黑色塑料袋 玻璃量筒(1 mL、5 mL) 移液器(5 mL、1 mL、100 μL)4、试剂制备柠檬酸缓冲液:称取柠檬酸37.5 g,柠檬酸三钠44.1 g,溶于1 L超纯水中。提取液:依次加入柠檬酸缓冲液64 mL、无水甲醇160 mL、三氯甲烷80 mL,混合均匀。(现用现配,低温隔夜会析出盐)。甲醇甲苯混合溶液(1:1):15 mL无水甲醇、15 mL甲苯混合均匀(现用现配)。0.5 mol/L KOH溶液:称取28.05 g KOH,溶于1 L超纯水中。0.2 mol/L KOH甲醇溶液(2:3):取0.5 mol/L KOH溶液40 mL,溶入60 mL无水甲醇。1 mol/L冰乙酸溶液:取1.74 mL冰乙酸,溶入30 mL去离子水。5、样品处理土样冻干:称取土壤4.00 g(沙土8.00g)于高速离心管中,冰冻过夜,随后放入冻干机冻干。土壤含水率测定:称取土壤5.00 g于105 ℃下烘干3 h,随后冷却至室温,取出称重,计算含水率。6、测定6.1取出冻干土样,加入23ml提取液,避光振荡2h;6.2离心取上清液,重复步骤1 ,合并两个上清液;6.3依次加入三氯甲烷、柠檬酸缓冲液,避光过夜;6.4去除上清液,吹干三氯甲烷;6.5过柱;6.6吹干无水甲醇,用甲醇甲苯溶液、KOH甲醇溶液复溶,水浴,冷却至室温;6.7加入去离子水、冰乙酸...
  • 点击次数: 0
    2024 - 09 - 10
    一、微生物碳利用效率的概念及其环境意义微生物碳利用效率(CUE):微生物分配给生长的碳量占吸收总碳量的比率,体现了微生物合成代谢和分解代谢之间的平衡。二、微生物碳利用效率测定的原理设置18O标记处理以及加入等量自然丰度水的对照组,通过培养过后DNA中18O丰度的差值来判读加入土壤的标记水有多少进入了新产生的DNA中,由此估算微生物生长速率。测定方法——18O-H2O培养法:试样的准备:收集200g左右田间土壤样品,混匀,将其中的大约100g土壤鲜样通过2mm 孔径筛,去除石头和肉眼可见的根等杂质,装入聚乙烯样品袋备用。预培养:*土壤野外采回后迅速过2mm筛,去除土壤内石块、根系、凋落物等;*烘干法测量土壤含水量土壤;*尽快将过筛后土壤熏蒸浸提法测量微生物MBC;(1) 田间持水率的测定调整土壤含水量到60%田间持水量(WHC,water holding capacity);将土壤放入实验所需温度培养箱进行预培养,预培养时间遵照实验设计(2)预培养土样控水处理18O标记培养一个样本一个对照组,或根据样本情况挑选20%样品做对照土壤DNA的提取野外采集土壤带回实验室迅速分装冻干提取DNA,并测得DNA含量。18O丰度测定吸取DNA提取液于洁净的银囊(已称重)中并置于60℃烘箱中干燥整夜后(称重)包好,用质谱仪测定18O丰度和总氧含量。MBC测定氯仿熏蒸提取法...计算更多检测相关讯息so栢晖生物了解更多~
  • 点击次数: 0
    2024 - 09 - 10
  • 点击次数: 0
    2024 - 09 - 10
    本标准规定了去除杂质、风干、烘干、磨碎等制备森林植物及森林枯枝落叶层样品的方法。本标准适用于森林植物及森林枯枝落叶层样品的制备。样品制备流程 1、去除杂质  植物样品,如果是叶子,要用清洁的湿纱布揩擦干净,如果是树皮或根,则将其表面的干土用刷子把它刷净;微量元素分析用的样品须用1~3g/L去垢剂溶液洗涤,再用水淋净。森林枯枝落叶层样品要挑尽混在其间的石砾、土块等非有机物质。 2、风干和烘干  把揩擦干净的植物新鲜样品及森林枯枝落叶层样品放在通风的地方,铺成薄层,并经常翻动使尽快风干,切不可使其霉变,风干后装入布口袋中。在有烘箱的条件下,可把擦干净的植物新鲜样品及森林枯枝落叶层样品松松地放入烘箱中,一般分两步干燥:先将植物新鲜样品在80~90℃鼓风烘箱中烘15~ 30 min(松软组织烘15 min,致密坚实的组织烘30 min),然后降温至65℃,森林枯枝落叶层样品可直接 在65℃烘干。干燥时间须视新鲜样品含水量而定,通常为12~14 h。然后装入布口袋中。 3、磨碎  样品磨碎前需在65℃烘箱中烘到发脆,然后再进行磨碎处理。如果只测定氮、磷、钾、钠、钙、镁,则可用植物粉碎机磨碎,并通过2mm筛孔,然后装于磨口广口瓶中备用。若分析项目除以上内容外,还要测定微量元素,则样品可用不锈钢剪刀剪细或放在研钵中研碎,并通过2 mm尼龙筛孔,然后装入磨口广口瓶中备用。木材试样可用刨子刨成刨花或用刀劈成小块后再用不锈钢剪刀剪细,装于磨口广口瓶中备用。注:1、已发霉的样品不能用来作森林植物的化学分析,因发霉可促进样品内部酶的催化作用,造成有机物质的严重损失。2、制备样品时应防止烟雾和灰尘污染。更多检测相关内容so栢晖生物了解更多~
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务