028-8525-3068
新闻动态 News
News 公司新闻

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

日期: 2024-03-13
标签:
文献解读

原名:Climate controls on nitrate dynamics and gross nitrogen cycling response to nitrogen deposition in global forest soils

译名:气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

期刊:Science of the Total Environment

IF:11.6

发表时间:2024.2

第一作者:Ahmed S. Elrys


摘要

了解氮素转化及其对氮富集响应的调控模式和控制措施,对于重新评估土壤氮素的限制或有效性及其环境后果至关重要。然而,气候条件如何影响森林土壤中硝态氮的动态以及总氮循环速率对氮富集的响应仍然只是初步了解。通过收集和分析来自231个15N标记研究的4426个独立观察和769个配对观察。研究发现,热带/亚热带森林土壤的硝化能力[总自养硝化(GAN)与总氮矿化(GNM)之比](19%)显著低于温带森林土壤(68%),这主要是由于低碳氮比和高降水分别导致热带/亚热带森林土壤的GNM和GAN较高。热带/亚热带森林土壤的硝态氮保持能力[同化硝态氮还原成铵态氮(DNRA) 和总硝态氮固定(INO3)之和与总硝化的比值](86%)显著高于温带森林土壤(54%),这主要是由于热带/亚热带地区的降水和GNM较高,刺激了DNRA和INO3结果表明,在温带土壤中,GAN与铵态氮固定(INH4)的比例显著高于热带/亚热带土壤。控制森林土壤异养硝化速率(GHN)的不是土壤因子,而是气候因子。GHN随温带地区气温升高和热带/亚热带地区降水减少而显著增加。在温带森林土壤中,总氮转化速率对氮富集不敏感。然而,在热带/亚热带森林中,氮的富集显著提高了GNM、GAN和GAN与INH4的比值,但由于微生物生物量和pH的减少,抑制了INH4和INO3研究认为,温带森林土壤具有更高的硝化能力和更低的硝酸盐保留能力,意味着更高的N损失风险。然而,热带/亚热带森林系统对N富集的响应从保守型向泄漏型转变。


研究背景

氮循环是森林生态系统功能的一个重要方面。土壤氮有效性调节森林生态系统过程和功能,即促进植物生长和生产,控制土壤氮流失风险。大多数植物可利用的氮是以无机形式存在的铵(NH₄+)和硝酸盐(NO3-)。植物以NH₄+和NO3-的形式吸收土壤中的N,但是因为硝化过程(微生物氧化有机氮以及NH₄+转变为NO3-),大部分都转化为NO3-被利用。铵氮离子往往被土壤微生物和阳离子交换过程保存,因此不容易丢失。相反,大多数异养微生物不会优先固定硝态氮离子,也不会因为携带负电荷而保持在阳离子交换位点上,因此当硝化能力高时,无机N更容易通过径流、淋滤和反硝化而损失。另一方面,以前的研究表明,增强土壤NO3-滞留能力有可能使N损失最小化。因此,土壤NO3-动态在控制植物氮供应中起主导作用;它们还对环境和土壤产生不利影响,如富营养化、温室气体排放、地下水NO3-污染和土壤酸化。因此,了解森林生态系统中调节土壤硝化和NO3-滞留能力的模式和控制措施对于重新评估土壤N限制或N有效性及其环境后果至关重要。在本研究中,将硝化能力定义为总自养硝化(GAN;微生物将NH₄+氧化成NO3-)与总氮矿化的比值(GNM),而NO3-滞留能力被定义为异化硝酸盐还原为铵(DNRA)加上总NO3-固定化(INO3, NO3-转化为有机N)与总硝化速率(包括GAN和异养硝化(GHN))的比值,代表微生物将有机N或NH₄+氧化为NO3-

土壤微生物氮循环速率受土壤理化、生物特性和气候条件的共同影响。在长时间尺度上,气候条件也会影响土壤特性,因为水热会加速化学变化(例如,热带/亚热带地区的土壤与温带地区不同)。因此,气候条件和土壤性质的差异在调节土壤硝化和NO3-保留以及N损失的能力模式中起关键作用。虽然热带/亚热带和温带地区的土壤性质和气候条件差别很大,导致这些地区的土壤总氮转化模式不同,而且温带和热带/亚热带森林土壤在硝化和NO3-保持能力的模式和控制方面的差异尚未在世界范围内得到评估。由于土壤基质有效性的增加,降水增加,微生物生物量的增加也对土壤氮动态(如GNM)产生积极影响。然而,土壤湿度的增加降低了土壤氧的有效性,导致厌氧条件,这可能抑制GAN,但增强DNRA。在全球范围内,Elrys等(2021)报道降水是GNM的主要刺激因子,GNM随着土壤pH值的降低而显著增加。然而,在低土壤pH(< 5.5)下,GAN受到抑制,这是由于降低所有分离的细菌氨(NH3)氧化剂的活性和NH3的可用性。此外,先前的研究表明,在较高的温度和湿度下,INO3和DNRA会增强。综上所述,研究假设热带/亚热带森林土壤的GNM、INO3和DNRA比温带地区高,而GAN比温带地区低,因为热带/亚热带地区的降水和温度比温带地区高,土壤pH值比温带地区低,这最终会增加温带地区土壤的硝化能力和热带/亚热带地区的NO3-保留能力(假设1)

据报道,GHN在自然生态系统中广泛存在,并且似乎与真菌活性有关,因为它们比细菌具有更高的耐酸性和更低的单位碳(C)所需氮量。然而,研究表明GHN并不局限于酸性土壤,甚至与土壤C、土壤C/N比和土壤pH没有关系。相反,Elrys等人(2023)和Zhang等人(2023)最近的分析指出,在全球尺度上,GHN随着年平均温度(MAT)的降低而显著增加。然而,这些先前的全球分析并没有分析MAT对陆地生态系统GHN的影响,这可能会影响这种关系。例如,Sun等人(2019)的结果表明,GHN在O层随着温度升高而增强,但在A层则没有,这归因于O层中基质数量较多。因此,森林土壤中含有较多基质,GHN对MAT的响应可能与之前全球meta分析中报道的不同。然而,在全球范围内,MAT对森林土壤GHN的影响尚未得到充分阐明。考虑到温度升高会增加土壤有机质降解及其微生物酶活性,从而增加土壤有机氮对异养硝化菌的有效性,研究假设森林土壤的GHN会随着温度升高而受到刺激(假设2)

在森林生态系统中,氮沉降是全球氮输入的关键来源,减少了这些生物群系的氮限制,同时增加了环境氮损失的潜在风险。因此,更好地了解总氮转化对氮富集的响应对于诊断森林生态系统土壤氮有效性和损失是必要的。热带/亚热带森林具有强风化和富氮缺磷的特点,而温带森林往往是氮限制。因此,在热带/亚热带森林中,N富集可能比在温带森林中更快地导致N饱和。当土壤生物有效氮超过土壤持氮能力时,就会发生氮素流失。然而,以往的研究结果并不一致。例如,在温带森林中,Tian等人(2018)发现总氮循环速率对氮富集的响应没有显著差异;然而,Corre等人(2007)和Tietema(1998)发现GNM、总硝化、总NH₄+固定化(INH4)和INO3对N富集有显著而积极的响应。相反,Berntson和Aber(2000)发现,温带森林中的N沉降导致INO3大幅减少。在热带森林土壤中,Corre等人(2010)和Baldos等人(2015)发现,长期施氮显著提高了GNM和总硝化作用,但抑制了INH4、INO3和DNRA,而Hall和Matson(2003)和Wang等人(2014)研究称,长期施氮对总氮循环速率没有影响。这些不同的结果表明,有必要进行全球meta分析,以分析热带/亚热带和温带森林中总氮转化速率对氮沉降的响应在多大程度上存在差异。根据N饱和假说,研究假设温带森林的土壤总N循环速率对N沉降的响应不如热带/亚热带森林,无机N添加可能会导致热带/亚热带森林更快的N饱和,从而增强GNM和GAN,但抑制INH4和INO3,最终增加N损失(即N2O排放和NO3淋溶)(假设3)

为了验证上述假设,研究进行了一项全球meta分析,以回答两个具体问题:(1)气候条件如何影响全球森林土壤中NO3-动态的模式和控制因素?(2)全球热带/亚热带和温带森林土壤总氮转化对无机氮富集的响应有何不同?该分析有助于理解森林生态系统土壤氮生产和保持过程的潜在机制及其对氮沉降的响应,最终提高对土壤氮循环对植物和生态系统功能影响的认识。


主要结果

1. 不同气候区域土壤氮循环模式

温带森林土壤的硝化能力、GAN以及GAN与INH4的比例明显高于热带/亚热带森林土壤(图1a, b)。相比之下,温带地区的NO3-滞留能力、GNM、GHN、INH4、INO3、DNRA以及NH₄+NO3-的MRT显著低于热带/亚热带森林土壤(图1c、d和图4)。


2. 土壤氮转化的控制因素

线性混合效应分析揭示了温带和热带/亚热带森林土壤中土壤总氮转化的各种控制因素(图2a-b和图4)。在这两种生态系统中,土壤硝化能力都随着土壤pH值的增加和土壤C/N比的降低而显著增加,但仅在温带森林土壤中,土壤硝化能力随着MAP和海拔的降低和MAT的增加而显著增加(图2a)。在热带/亚热带森林土壤中,土壤NO3-滞留能力随着MAP (p = 0.007)、MAT (p = 0.07)、SOC (p = 0.08)和C/N比(p = 0.014)的增加和pH的降低而增加(p < 0.0001),但在温带森林土壤中随着C/N比的增加和总氮的减少而增加(图2b)。

相关分析显示,森林土壤的硝化能力随纬度、容重、pH和MBN的增加而显著增加,但随海拔、MAP、C/N比、可提取NH₄+、GNM和INH4的降低而显著增加(图3)。相比之下,森林土壤的NO3-滞留能力随着MAP、MAT和C/N比的增加以及纬度、pH、总N和GAN的降低而显著增加(图3)。土壤NO3-与NH₄+的比率和GAN与INH4的比率随着土壤硝化能力的增强和土壤NO3-滞留能力的降低而显著增加(图3)。

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

图1 温带和热带/亚热带森林土壤硝化能力(a)、总自养硝化(GAN)与总铵固定化(INH4)之比(b)NO3滞留能力(c)NH4+平均停留时间(d)的全球格局


文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

图2 温带和热/亚热带森林土壤硝化能力(a)NO3−滞留能力随环境因子的斜率

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

图3 特定地点参数、土壤属性和总氮转化率之间的皮尔逊相关性分析


3. 热带和温带森林土壤N循环对N沉降的不同响应

meta分析结果显示,在热带/亚热带森林土壤中,无机N的添加显著促进了GNM、GAN、可提取的NH₄+和NO3-、N2O排放以及GAN与INH4、NO3-与NH₄+的比值,但显著降低了INH4和INO3(图4a, b)。在温带森林土壤中,无机氮的添加促进净氮矿化和硝化、GHN、可提取态NH₄+和NO3-、NO3-与NH₄+的比值以及N2O排放。无机氮增加了热带/亚热带森林土壤有机碳和H+浓度,但抑制了MBC和微生物呼吸速率(图4a, c)。还促进了温带森林土壤总氮和有机碳(图4a, c)。总氮产量和土壤性质对无机氮富集的响应随N添加速率(kg N ha-1 year-1)和土层而异(图5a-d)。在热带/亚热带森林中,GNM只对低N添加速率(< 100)有正响应,而在热带/亚热带和温带森林中,总硝化只对高N添加速率(> 100)有正响应(图5a, b)。在热带/亚热带森林中,无机氮的添加抑制了MBC和土壤H+浓度,而在温带森林中则促进了它们。GNM仅在热带/亚热带森林有机层显著增强(图5d)。添加无机氮促进了温带森林土壤有机层的总硝化作用,而促进了热带/亚热带森林土壤矿物层的总硝化作用(图5c、d)。在土壤矿物层中,添加无机氮促进了温带森林土壤H+浓度,而抑制了热带森林土壤H+浓度。

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

图4 (a)温带和热带/亚热带森林土壤氮素转化速率和土壤性质对无机氮添加的综合响应(bc)温带和热带/亚热带森林土壤的总氮转化率和土壤性质对无机氮添加的相对比

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应

图5 温带森林(ac)和热带/亚热带森林(bd)不同氮肥添加量(ab)和土层(cd)GNMGN速率和土壤性质对无机氮添加的影响


# 栢晖 #

—特色检测指标—

土壤、植物酶活检测

氨基糖、木质素PLFA、CUE

磷组分、有机酸、有机氮组分

微生物量碳氮磷同位素

其他土壤、植物、水体等常规检测指标均可测定

了解更多检测信息

按区域添加微信咨询详情

文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应


文献解读(2024.02发布)|气候控制对全球森林土壤硝态氮动态和总氮循环对氮沉降的响应


  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 06 - 17
    文献解读原 名:Saline-alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon译 名:盐碱地复垦通过优先积累植物源碳来提高表层土壤碳储量期 刊:Science BulletinIF:18.9发表日期:2024.5.18第一作者:Lin Chen01摘要盐碱地是应对全球气候变化和保障粮食安全的重要耕地储备资源,部分原因是它可以储存大量的碳(C)。目前尚不清楚盐碱土地复垦(将盐碱土地转化为耕地)如何影响土壤碳储存。本研究结果表明,与盐碱地相比,盐碱地复垦显著增加了植物来源的碳积累和植物来源的碳与微生物来源的碳比率,导致植物源碳成为SOC储量的主要贡献者,POC封存和MAOC封存分别与盐碱复垦引起的植物和微生物来源的碳积累密切相关,即盐碱地复垦通过优先促进植物来源的碳积累来增加表层土壤中的碳储存量。02引言土壤盐碱化使全球土壤(0-30cm)SOC储量减少了3.47t ha−1。利用土壤修复技术可以有效地逆转这一现象。在农业生态系统中,微生物残体(特别是真菌残体)优先聚集土壤的POC部分。植物和微生物源碳与POC和MAOC含量之间的关系以及植物和微生物来源的碳对盐碱条件下SOC储存的贡献知之甚少。两个公认的生物标志物(木质素酚和氨基糖)已被广泛用于估计植物衍生木质素残体和微生物残体对SOC库的贡献。因此,我们分别使用木质素酚和氨基糖作为植物和微生物残体碳的表征。本研究的目的是(i)量化盐碱土地复垦对表层土壤碳储量的影响,确定影响碳储量的关键因素;(ii)评估植物和微生物来源的碳与POC和MAOC池之间的关系,以及植物和微生物来源的碳对中国主要盐碱区SOC储存的贡献。盐碱地复垦对中国主要盐碱区...
  • 点击次数: 0
    2024 - 05 - 27
  • 点击次数: 0
    2024 - 05 - 20
    文献解读原名:Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate译名:通过13C标记光合产物的追踪,禁牧通过根源碳的微生物残体增加了土壤有机碳期刊:Biology and Fertility of SoilsIF:6.5/Q1发表日期:5 March 2024第一作者:瞿晴01摘要背景:草原储存了大量的碳,然而,禁牧后土壤碳固存的潜在机制尚不清楚。本研究旨在阐明温带草原在长期禁牧后(~40年) ,植物和微生物残体对土壤有机碳(SOC)贡献的驱动因素。方法:现场进行了13C-CO2原位标记实验,并结合生物标记物追踪植物-土壤系统中的13C,以评估植物对土壤的碳输入。结果:长期禁牧提高了植物和土壤碳库包括地上生物量、地下生物量、微生物生物量和残体;且禁牧草地新输入光合碳在植物和土壤系统中的分配量高于放牧草地,但在土壤CO2中的分配量低于放牧草地。新输入的光合碳在土壤和微生物量中的分配量与根系中光合碳的分配量呈正相关关系。与放牧相比,禁牧提高了草地土壤有机碳含量约2倍,但木质素酚对土壤有机碳的贡献甚微(0.8%),而真菌残体碳的积累是导致土壤有机碳含量增加的主要因素。结论:受矿物颗粒保护的微生物残体碳是导致禁牧草地土壤有机碳含量高于放牧草地的主要因素。总之,禁牧不仅增加了地上生物量,也增加根系生物量和根际沉积,导致微生物生物量和残体的形成,在矿物基质的保护作用在土壤中长期稳定存在。禁牧条件下,微生物残体特别是真菌残体对SOC的积累贡献大于木质素酚。02主要结果图1 放牧和禁牧样地地植物-土壤-微生物系统的碳储量。(a)地上部分碳库;(b)根碳库;(c)土壤有机碳库(0−25c...
  • 点击次数: 0
    2024 - 05 - 17
    文献解读原名:The soil microbiome governs the response of microbial respiration to warming across the globe译名:土壤微生物群落主导了微生物呼吸对全球变暖的响应期刊:Nature Climate Change IF:30.7发布时间:2023.12第一作者:Tadeo Sáez-Sandino01摘要土壤微生物呼吸对变暖的敏感性(Q10)仍然是预测土壤向大气碳排放的一个主要不确定来源,因为驱动各生态系统Q10模式的因素是相互独立评估的。本研究采用了来自各大洲和主要生物群落的332个地点的土壤,同时评估了全球Q10模式的主要驱动因素。与生化难分解性、矿物质保护、底物数量和环境因素相比,土壤微生物群落(即微生物生物量和细菌分类群)解释了Q10值变化中的最大部分。提供了确凿的证据表明土壤微生物群落在很大程度上主导了土壤异养呼吸对变暖的响应,因此在评估陆地碳—气候反馈时需要明确考虑这一因素。02研究背景土壤碳(C)通过土壤异养群落的呼吸释放到大气中是导致大气CO2增加的基本途径。土壤呼吸每年释放的二氧化碳大约是人为排放的五倍,这在很大程度上决定了陆地生态系统是碳源还是碳汇。土壤异养呼吸的温度敏感性(即土壤微生物呼吸随着温度上升10°C而增加的因素;Q10)是预测陆地C-气候反馈水平的主要不确定性来源。生态系统和生物地球化学模型假设Q10为常数,尽管人们普遍认为Q10随温度等环境条件而变化。然而,决定Q10在大空间尺度上变异性的非生物和生物因素的相对贡献在很大程度上仍然未知。解释Q10模式的主要驱动因素通常考虑土壤微生物群、基质数量、矿物保护、生化抗性和环境因素的影响。首先,土壤微生物组(即微生物生物量、丰富度和群落组成)是有机物分解的最终参与者,并随着气候变暖调...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
微信公众号
Q  Q : 2105984845
地址:中国四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务