028-8525-3068
新闻动态 News
News 技术交流

还原糖含量检测方法对比

日期: 2021-09-26
标签:

实验材料:

植物样:青稞种子


实验步骤:


01:样品提取

还原糖含量检测方法对比

准确称取0.5g经研磨的样本,放在100ml的烧杯中,先以少量蒸馏水调成糊状,然后加50ml蒸馏水,搅匀,置于50℃恒温水浴中保温20min,使还原糖浸出。离心或过滤,用20ml蒸馏水洗残渣,再离心或过滤,将两次离心的上清液或滤液全部收集在100ml的容量瓶中,用蒸馏水定容至刻度,混匀,作为还原糖待测液。


02:制作标准曲线

7支具有25ml刻度的血糖管或刻度试管,编号,按比例精确加入浓度为1mg/ml的葡萄糖标准液和3,5-二硝基水杨酸试剂。将各管摇匀,在沸水浴中加热5min,取出后立即放入盛有冷水的烧杯中冷却至室温,再以蒸馏水定容至25ml刻度处,用橡皮塞塞住管口,颠倒混匀(如用大试管,则向每管加入21.5ml蒸馏水,混匀)。540nm波长下,用0号管调零,分别读取16号管的消光值。以消光值为纵坐标,葡萄糖mg为横坐标,绘制标准曲线,求得直线方程。

03:显色测定

取3支25ml刻度试管,编号,分别加入还原糖待测液2ml,3,5-二硝基水杨酸试剂1.5ml,其余操作均与制作标准曲线相同,测定各管的吸光值。


04:数据处理  

分别在标准曲线上查出相应还原糖mg数,计算还原糖百分含量。

    






其他还原糖检测方法



1、DNS法

测各种还原糖标准曲线原理:3,5-二硝基水杨酸(3,5-dinitrosalicylic acid, DNS)在碱性条件下与还原糖的还原末端反应生成橙黄至棕红色的氨基化合物,在一定范围内,还原糖的量和反应液的颜色强度呈正比例关系。

  引伸:植物还原糖检测试剂盒是还原糖在碱性条件下被氧化成糖酸,3,5-二硝基水杨酸被还原为棕红色的氨基化合物。在一定范围内,还原糖的量与棕红色产物的颜色深浅程度呈一定比例关系。测定棕红色物质的吸光度,该吸光度值与还原糖含量呈线性关系,利用比色法和标准曲线测得样品中的还原糖的含量。


2、铁氰化钾法

根据蔗糖的非还原性,用生成物(葡萄糖和果糖)能够还原菲林溶液中的铜,再根据生成的氧化亚铜的量求出糖的含量。先制备还原糖待测混合液,通过0.1N的硫代硫酸钠滴定,达到当量点前,注入淀粉指示剂滴定至蓝色消失。土壤的转化酶活性,以单位土重的0.1N硫代硫酸钠毫升数(对照与试验测定的差)表示。

测各种还原糖标准曲线原理:铁氰化钾[K3Fe(CN)6〕本身为黄色(吸收峰在420nm)左右,而与还原糖反应可生成无色的亚铁氰化钾[K4 Fe( CN)6 ],在一定范围内,还原糖的量和反应液的颜色强度呈反比例关系。

    讨论:该法是还原糖检测的经典方法,铁氰化钾本身为黄色,与还原糖反应后生成无色的亚铁氰化钾。



3、MBTH法

测各种还原糖标准曲线原理:MBTH(3-甲基-2-苯并噻唑酮腙,3-methyl-2-benzothiazolinone hydrozone)首先与还原糖反应生成嗪,过量的MBTH被Fe+3氧化成阳离子,再与嗪反应生成青蓝色化合物,在一定范围内,还原糖的量和反应液的颜色强度呈正比例关系。

  讨论:该法为还原糖测定的新方法。在氧化反应过程中MBTH 失去两个电子和一个质子,形成了亲电子中间体,这一中间体被假设是具有活性的耦合化合物,中间体再与嗪反应。


还原糖含量检测方法对比

总结:

比较三种方法测还原糖的精密度和回收率,MBTH法的灵敏度最高,铁氰化钾法次之,DNS法的灵敏度最低。MBTH法灵敏度高,测定不受蛋白质、醋酸盐和琥珀酸盐缓冲液的干扰,对于不同聚合度的同类还原糖,其还原端的显色吸光系数基本相同,通过实验证明,它特别适合于多糖水解酶的低酶活测定或DON酶联免疫加标测定;DNS法虽然操作稳定,精密度高,但此法灵敏度相对较低,用此法测定微量多糖水解酶,如饲料添加剂中木聚糖酶活力时,则无法准确测定;

铁氰化钾法灵敏度高于DNS法,但也存在诸多弊端,如该法为逆向显色,还原糖浓度控制稍有不当或过量,即得不到任何结果。



  • 最新资讯 MORE+
  • 点击次数: 0
    2024 - 07 - 25
    一、木质素酚实验流程:→氧化:CuO+Fe(NH4)2(SO4)2·6H2O+2 M NaOH高温氧化。收集上清液→提取:纯水洗渣两次,合并上清液,调PH→衍生:吡啶+BSTFA衍生→上机:(GS-MS)图谱展示:二、角质、软木质实验流程:→水解:称取约1.0~2.0g的土样于四氟乙烯反应釜中,1mol/L甲醇化氢氧化钠3mL,沸水浴3h。→净化:a.酸化:待水解液冷却至室温后,用10ml甲醇:二氯甲烷(1:1)混合液冲洗水解管,超声15min。取上清液用HCl酸化至ph b.萃取:收集有机相于5mL衍生瓶中,于38°C下轻轻氮吹至干。→衍生:向吹干的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。漩涡30s混匀,70°C反应3h,待冷却后上机。→上机:(GC-MS)图谱展示:三、脂类(游离态脂)实验流程:→萃取:称取约0.5~1.0g的土样于10mL离心管中,加入5mL丙酮:二氯甲烷(1:1)混合液超声萃取20min,离心收集上清液。重复两次合并上清液并氮气吹干,衍生后上机测试。→衍生:向吹干的样品和标准的衍生瓶中加入100uL吡啶和400uLBSTFA后盖紧。涡旋30s混匀,70°C反应3h,待冷却后上机。→上机(GC-MS)图谱展示:更多相关检测讯息so栢晖生物~
  • 点击次数: 0
    2024 - 07 - 24
    文献解读原名:Not all soil carbon is created equal: Labile and stable pools under nitrogen input译名:并非所有的碳都是相同的:氮输入下的易分解库和稳定库期刊:Global Change BiologyIF:10.8发表日期:2024.7.8第一作者:臧华栋 中国农业大学农学与生物技术学院背景人类活动提高了世界范围内的氮输入,由于农业活动和化石燃料的使用,人类氮输入比自然来源大30%-50%。鉴于碳氮之间的密切关系,活性氮输入水平将极大地影响全球碳循环,氮输入的增加刺激了土壤碳储存,因为氮的增加促进了植物生物量的产生和植物来源的碳输入,然而氮输入对不同周转时间的有机质(SOM)库影响仍存在争议,特别是其潜在机制。因此,探究有机质库对氮输入的响应对阐明全球C循环的复杂性至关重要。假设(1)通过方法组合可以有效地评价C池(从数年到数十年的周转率)对氮施肥的响应。(2)“碳限制”和“微生物氮开采”这两种机制都与SOM池相关,取决于它们的可用性,这代表这两种理论之间的联系。科学问题(1)分析不稳定到稳定有机质的矿化反应;(2)量化各种有机质库分解对氮输入的敏感性;(3)评估细菌和真菌群落变化,并阐明微生物群落的变化程度如何反映有机质分解对氮输入的响应。材料与方法方法:将有机质中的13C自然丰度与21年的C3-C4植被转换和长期孵化实验结合起来,估算氮输入对不稳定碳库和稳定碳库有机质矿化的影响。土壤取自霍恩海姆大学试验站0-10厘米深度(有机碳约2.4%,总氮含量0.25%,pH值5.1)和邻近草地(有机碳约2.5%,总氮0.21%,pH 5.1)。巨芒草作为一种C4植物,在21年前被引入到之前的C3草地土壤中,导致δ13C从−27‰转移到−17‰。δ13C中这种差异被用来区分新土壤和老土壤有机碳。C4-...
  • 点击次数: 0
    2024 - 07 - 15
    土壤氨基糖实验流程如下:一、实验方法及原理氨基糖在吡啶-甲醇溶液中,以 4-二甲氨基吡啶为催化剂的条件下与盐酸羟胺和乙酸酐发生糖腈乙酰酯反应, 所得衍生物可利用气相色谱测定。二、实验步骤2.1主要实验仪器   GC(毛细管分流进样口, FID检测器)鼓风烘箱(涵盖105℃,可定时8h)涡旋混合仪(2850rpm)离心机(50mL,3650rpm)冷冻干燥机水浴锅(45℃、80℃)旋转蒸发仪(100mL,65℃)离心机(5mL,8000rpm)2.2 实验步骤1、水解:称取约0.5~1.0g的土样于水解管中,沿管壁加入5 mL 6 mol/L盐酸,用氮气置换水解管中空气2min后密封。在烘箱中105℃放置8h水解。2、净化:a) 除酸:待水解液冷却至室温后,加入200μgN-甲基氨基葡萄糖(1mg/mL水溶液,200μL)。涡旋仪震荡30s混匀。取部分水解液于5mL离心管中,于8000rpm离心1min。取上清液2.5mL于50mL离心管中用氮气于65℃吹干。用25mL纯水溶解吹干后的残渣。加0.4mol/LKOH和0.01mol/LHCL调节pH至6.6~6.8。b) 除盐:离心管以3000rpm离心5min,转移出上清液于100mL茄型瓶中,于65℃,25rpm旋转蒸发至干。再加入10mL无水甲醇分两次溶解瓶中残渣。后转移至另一50mL离心管。氮吹至5mL以下,涡旋溶解管壁有机物后,以4000rpm离心5min,除盐。再将上清液转移到5mL衍生瓶中并加入100μg戊五醇(1mg/mL水溶液,100μL),于40℃氮气吹干。3、标准样品制备:同时准备3个标准样品。另取衍生瓶中加入100μL混标(1mg/mL的氨基葡萄糖、氨基半乳糖、氨基甘露糖,0.5mg/mL胞壁酸),100μgN-甲基氨基葡萄糖(1mg/mL水溶液,100μL),100μg戊...
  • 点击次数: 0
    2024 - 07 - 01
    原名:Conversion of SIC to SOC enhances soil carbon sequestration and soil structural stability in alpine ecosystems of the Qinghai-Tibet Plateau.译名:无机碳(SIC)向有机碳(SOC)的转化增强了青藏高原高寒生态系统的土壤固存和土壤结构稳定性。期刊:Soil Biology and BiochemistryIF:9.7发表日期:2024.8(网络首发2024.5)第一作者:马云桥 青海大学高原生态与农业国家重点实验室(李希来课题组)一、背景陆地生态系统储存了大量的有机碳(SOC)和无机碳(SIC),土壤有机碳和土壤无机碳由非生物和微生物因素驱动具有潜在动态相互关系,对土壤结构和固碳有重要影响(图1)。同时青藏高原约占国土面积的五分之一,是我国巨大的碳库,因此对该区域生物和非生物因子介导的土壤有机碳和无机碳动态转化过程和机制研究显得尤为重要。图1 微生物驱动的有机碳和无机碳周转关系示意图二、科学问题(1)评估不同空间尺度下不同植被类型中聚集体的组成和稳定性;(2)量化SOC、MBC、DOC、SIC和碳水解酶酶活性(α-葡萄糖苷酶和β-葡萄糖苷酶)的分布,以及不同植被类型不同土壤团聚体中细菌和真菌群落的组成和多样性;(3)分析调控团聚体内SOC和SIC动态转化的主要生物和非生物因子,以约束土壤团聚体形成与土壤碳库动态转化的关系。三、材料与方法(1)研究地点位于中国青海省河南-蒙古自治县(北纬34°05′-34°56′,东经100°53′-102°16′),海拔范围3400-4200米。(2)MS代表高寒草甸阳坡,SS代表高寒草甸阴坡,WR代表河滨湿地。每种地形的优势植物机水汽条件有所不同(...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
Q  Q : 2105984845
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务