028-8525-3068
新闻动态 News
News 技术交流

土壤微生物碳/氮/磷的检测方法

日期: 2021-08-20
标签:

土壤微生物碳的测定--仪器分析法

1、仪器与试剂:

自动有机碳分析仪、真空干燥器、小烧杯(蒸发皿)、塑料瓶、中速定量滤纸、漏斗、震荡仪、电子称等

(1)无乙醇氯仿:氯仿中含有少量乙醇做稳定剂,乙醇会影响氯仿在低压下沸腾。所以需要提纯。

提纯:在通风橱中,将氯仿(三氯甲烷)按1:2的体积比与蒸馏水一起加入分液漏斗中,充分摇动1min,慢慢放出下层氯仿于烧杯中,如此重复洗涤三次。得到无乙醇氯仿,加入适量无水氯化钙,去除氯仿中的水分。可重复使用。

(2) 0.5mol/L硫酸钾溶液:称取硫酸钾87.1g,溶于去离子水中,稀释至1000ml

(3)  1mol/L NaoH溶液:称取氢氧化钠(AR)4g,置于一大烧杯中,并立即倒出,然后加入不含二氧化碳的蒸馏水约100mL,将溶液注入细口瓶中,塞紧橡皮塞,混匀,备用。 

2、操作步骤:

(1)培养

①称取过2mm筛的新鲜土样(相当于干土10g,取部分样测含水量,确定称取土样重量)2份,分别放入25ml小烧杯(培养皿)中。将盛有一份土样的烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约放置烧杯2/3的量)的25ml烧杯,烧杯内放入少量防爆沸玻璃珠,同时放入盛有1mol/L NaOH溶液的小烧杯(吸收熏蒸过程中释放出来的CO2)。

②盖上真空干燥器盖子,用真空泵抽真空,使氯仿保持沸腾5min。关闭真空干燥阀门,于25度黑暗条件下培养24h。另一份样置于另一干燥器中为不熏蒸对照处理。

③熏蒸结束后,打开真空干燥器阀门(应该听到空气进入的声音,否则熏蒸不完全,重做,取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5到6次,每次30分钟,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。

④从干燥器中取出熏蒸和未熏蒸土样,将土样转移到80ml聚乙烯离心管(塑料瓶)中,加入40ml 0.5mol/L 硫酸钾溶液(土水比1:4)800 r/min振荡30分钟,用中速定量滤纸过滤。同时做一个无土壤机制空白。土壤提取液最好立刻分析,或--20℃冷冻保存,使用前需解冻摇匀。

仪器测定法:

吸取上述土壤提取液10ul注入自动总有机碳(TOC)分析仪上,测定提取液有机碳含量。(仪器使用方法待定)

3、结果计算: 

土壤微生物生物量碳:Bc=Ec/Kec

Ec为熏蒸与未熏蒸土壤的差值;

Kec为转换系数,取值为0.45

土壤微生物氮--氯仿熏蒸-TOC

1. 微生物氮测定

1.1、实验试剂

所有试剂除注明者外,均为分析纯。实验用水为蒸馏水或去离子水或相当浓度的水。

(1)无乙醇氯仿:氯仿中含有少量乙醇做稳定剂,乙醇会影响氯仿在低压下沸腾。所以需要提纯。

提纯:在通风橱中,将氯仿(三氯甲烷)按1:2的体积比与蒸馏水一起加入分液漏斗中,充分摇动1min,慢慢放出下层氯仿于烧杯中,如此重复洗涤三次。得到无乙醇氯仿,加入适量无水氯化钙,去除氯仿中的水分。可重复使用。

(2)硫酸钾提取剂;

(3)硫酸铬钾还原剂;

(4)硫酸铜溶液;

(5)10 mol L-1氢氧化钠溶液;

(6)4 mol L-1氢氧化钠溶液;

(7)0.01 mol L-1氢氧化钠溶液;

(8)硼酸溶液;

(9)标准硼砂溶液;

(10)指示剂贮存液;

(11)指示剂溶液;

(12)标准氯化铵贮存液;

(13)标准氯化铵溶液。

1.2、实验仪器

流动注射氮分析仪、真空抽滤瓶、容量瓶、其他仪器设备同土壤微生物碳。

1.3、实验步骤

(1)土壤前处理、熏蒸、提取同微生物碳处理。

(2)提取液中硝态氮还原:吸取15.0 ml熏蒸与不熏蒸土壤0.5 mol L-1 K2SO4浸提液于250 ml消化管中,加入10 ml硫酸铬钾还原剂和300 mg锌粉,至少放置2 h后再消化。研究结果表明熏蒸与不熏蒸土壤提取液中硝态氮含量差异很小,在测定土壤MB-N时,可以不包括硝态氮,即省略提取液中硝态氮还原过程。

(3)消化:方法Ⅰ:吸取10.0 ml熏蒸与不熏蒸土壤0.5 mol L-1  K2SO4浸提液(或经还原反应后的浸提液)于250 ml消化管中,加入0.2 ml 0.19 mol L-1 CuSO4溶液、5 ml分析纯浓硫酸、及少量防瀑沸的颗粒物(如经浓硫酸处理并洗涤后烘干的瓷片,0.5 cm大小),混合液消化变清后再回流3 h。

(4)消化液中氮测定:消化液冷却后,用去离子水洗涤转移到100 ml容量瓶中,至体积大约为70 ml,待再冷却后慢慢加入10 ml 10 mol L-1NaOH溶液中和部分H2SO4,边加边充分混匀(以免因局部碱浓度过高而引起消化液中NH4+的损失),再用去离子水定容至100 ml。溶液中NH4+含量采用流动注射氮分析仪(FIAStar 5000型)测定。采用40 µl样品圈,KTN扩散膜(耐强酸和强碱),载液为去离子水,试剂Ⅰ为4 mol L-1 NaOH溶液,试剂Ⅱ为指示剂溶液。

(5)校正曲线溶液制备:分别取0、0.5、1.0、2.0、3.0、4.0、5.0 ml 50 µg N ml-1标准氯化铵溶液于100 ml容量瓶中,分别用去离子水洗涤转移1个空白消化液于容量瓶中,其余操作步骤同样品,用去离子水定容至100 ml,即得浓度分别为0、0.25、0.5、1.0、1.5、2.0、2.5 µg N ml-1系列标准氯化铵溶液,采用测定KTN方法模块测定和制备工作曲线,校正曲线溶液最少应每个月制备一次。其他具体操作参见仪器使用说明。

1.4、计算:

土壤MB-N = EN/KEN

式中:EN = 熏蒸土壤提取的全氮 – 不熏蒸土壤提取的全氮;

kEN为转换系数,取值0.25。

土壤微生物磷的测定--无机磷测定法

1、仪器与试剂:分光光度计,培养皿、真空干燥器、25ml、1000ml容量瓶、塑料瓶。

(1)无乙醇氯仿

(2)0.5mol/L NaHCO3 浸提液:溶解 NaHCO3 42.0g于800mL水中,以0.5mol/L NaOH溶液调节浸提液的PH至8.5,再用去离子水稀释至1000mL。(此溶液爆于空气中可因失去CO2而使PH增高,应现配现用)

(3)250mg/L磷酸二氢钾溶液:称取1.0984g分析纯磷酸二氢钾(称量前105℃烘2-3小时),溶于去离子水并定容至1000mL .

(4)钼锑抗试剂:

5g /L酒石酸氧锑钾溶液:称取钼酸铵0.5g,溶于100mL水中

‚钼酸铵-硫酸溶液:称取钼酸铵10g,溶于450mL水中,缓慢地加入153mL浓H2SO4,边加边搅拌。

再将上述溶液加入到‚溶液中,最后加水至1000mL 。充分摇匀,储存于棕色瓶中,此为钼锑抗混合液。

临用前(当天),称取左旋抗坏血酸1.5g,溶于100mL 钼锑抗混合液中,混匀,此即钼锑抗试剂。有效期24h。

(5)磷标准溶液:准确称取在105℃烘箱中的KH2PO4(分析纯)0.2195g,溶解在400mL水中,加浓H2SO4 5mL(加H2SO4防长霉菌,可使溶液长期保存),转入1000mL容量瓶中,加水至刻度。此溶液为50ug/mL磷标准溶液。吸取上述磷标准溶液25mL,用去离子稀释定容至250mL,即得5ug/mL磷标准溶液(此溶液不宜久存)。

(6)0.5mol/L NaOH溶液:称取氢氧化钠(AR)2g,置于一大烧杯中,并立即倒出,然后加入不含二氧化碳的蒸馏水约100mL,将溶液注入细口瓶中,塞紧橡皮塞,混匀,备用。

2、操作步骤:

(1)称取过称取过2mm筛的新鲜土样(相当于干土5g)3份,分别放入3个25ml小烧杯中。一份熏蒸,两份不熏蒸。熏蒸处理同测定微生物碳。

(2)从干燥器中取出熏蒸和未熏蒸一份土样,将土样转移到250毫升聚乙烯提取瓶(塑料瓶)中,加入100ml 0.5mol/L NaHCO3 浸提液(水土比20:1),300r/min振荡30min ,用慢速定量滤纸过滤。同时做一个无土壤机制空白。土壤提取液最好立刻分析,或-20℃冷冻保存,使用前需解冻摇匀。

(3)另一份未熏蒸土样放入250毫升聚乙烯提取瓶(塑料瓶),加入0.5ml 250mg/L磷酸二氢钾溶液,再加入100mL 0.5mol/L NaHCO3 浸提液,同上进行提取。(用来测定外加正磷酸盐态无机磷的回收率Rpi,以校正土壤对熏蒸处理所释放出来的微生物生物量磷的吸附与固定。)

(4)吸取上述3种提取液10ml(依样品含磷量而定)于25ml容量瓶中,吸取外加磷的提取液5ml。加入适量的1.0mol/L HCL溶液进行中和,HCL溶液的加入量通常为提取液体积的一半。(即加入5ml,外加磷的提取液加入2.5ml),放置4小时并间隙振荡(以排除溶液中的CO2)补充去离子水至20mL(看情况添加),加入4mL混合显色剂,再加水定容,摇匀。显色完全(约30min)后,在880nm波长处进行比色。

3、标准曲线:准确吸取5ug/mL,磷标准溶液0、0.5、1、2、3、4、5mL分别放入25ml容量瓶中,加水约至20ml,然后加钼锑抗试剂4ml,最后用水定容至25mL。30min后开始进行比色。

4、结果计算:土壤微生物生物量磷(Bp):Bp=Epi/(Kp*Rpi)

式中:

Epi为熏蒸和未熏蒸土壤的差值;

Rpi为(外加磷酸二氢钾溶液土壤的测定值-未熏蒸土壤的测定值)/25*100%;

Kp为转换系数,取值为0.4。


  • 最新资讯 MORE+
  • 点击次数: 0
    2025 - 01 - 09
    文献解读原名:Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions译名:十年的矿质施肥改变颗粒态和矿物结合态组分有机质的分子组成和来源期刊:SBBIF:9.8发表时间:2023.07第一作者:Zhichao Zou摘要背景:长期矿质施肥对土壤有机质(SOM)的数量、质量和稳定性的影响仍不明确。方法:通过结合四种生物标志物(自由与结合态脂类、木质素酚和氨基糖),研究中国北方农田在10年矿质施肥下(400 kg N ha−1 yr−1, 120 kg P ha−1 yr−1 和 50 kg K ha−1 yr−1)的SOM的分子组成、分解和来源。我们关注于两个差异化的SOM组分:颗粒态有机质(POM)和矿质结合态有机质(MAOM)。结果:尽管施肥对全土SOC的影响有限,但导致MAOM中SOC增加23%,并且改变了其组成和来源。施肥使POM中植物源的萜类化合物增加46%,MAOM中长链脂类(≥20)增加116%,但是降低了POM中54%的短链脂类(结论:矿质施肥通过改变温带农业生态系统中矿物-有机复合体的分子组成和固存,增加SOM的稳定性和持久性。研究背景SOM能够维持土壤肥力、促进土壤水分存留和有机碳(SOC)固存,对农业生态系统的功能的发挥至关重要。在典型的农田,大量矿质肥料的输入增加了作物生产力,导致大量的碳(C)通过残体、根系及其分泌物进入土壤,随后改变了SOM周转。然而,我们对SOC稳定和固存对营养施肥的响应方向和程度的基础理解仍然不明确。之前的研究报道了农业生态系统中施肥管理导致更高、中性以及甚至更低的SOC水平。在集...
  • 点击次数: 0
    2025 - 01 - 02
    文献解读原名:Temperature-dependent soil storage: Changes in microbial viability and respiration in semiarid grasslands译名:随温度变化的土壤储存:半干旱草原微生物活力和呼吸作用的变化期刊:Soil Biology and BiochemistryIF:9.8线上发表日期:2024年12月发表日期:2025年3月通讯作者:田建卿(中国科学院植物研究所)亮点(1)相比于-20℃,在4℃下储存土壤细胞的存活率更高。(2)在 4 °C 下温和解冻 3 天可优化冻土中的细胞活力。(3)土壤呼吸对储存的响应取决于土壤类型。背景土壤微生物是生物地球化学循环的关键引擎,也是土壤有机碳 (SOC) 分解和稳定的关键驱动因素。理想情况下,研究人员应在取样后立即对新鲜土壤进行大多数微生物活动和微生物介导的土壤生物地球化学分析,然而,由于实际限制,在低温下储存土壤是土壤微生物学研究中的常见做法,可能会影响微生物活力和微生物介导的呼吸作用,几十年来,不适当的储存条件导致了已发表的研究中相互矛盾的结论。目前对储存过程中活微生物参数的变化和微生物介导的呼吸仍然缺乏了解。材料与方法(1)于2022年8月和2023年5月在从内蒙古草原生态系统研究站(IMGERS;116◦42′E,北纬43°38′,海拔约1260米)。中国内蒙古自治区采集了4种类型的土壤,包括大针茅(S.grandis)、羊草(L.chinensis)、西林河流域草甸(湿地)和浑善达克沙地(沙质)土壤。之后将4种类型的土壤样本分别在4℃和 -20℃下储存 0、5、40 和210天。对于在-20℃下保存的土壤,作者采用了两种解冻方法:室温下直接解冻和4 ℃下温和解冻(gentle thaw...
  • 点击次数: 0
    2024 - 12 - 06
    # 栢晖 #—特色检测指标—土壤、植物酶活检测氨基糖、PLFA及其同位素、磷组分木质素酚、CUE、有机氮组分、有机酸氨基酸、微生物量碳氮磷、同位素等苯多羧酸、红外光谱、微生物多样性等其他土壤、植物、水体等常规检测指标均可测定欢迎联系下方相关工作人员详细沟通
  • 点击次数: 0
    2024 - 11 - 29
    文献解读原名:Rhizosphere as a hotspot for microbial necromass depositioninto the soil carbon pool译名:根际是微生物残体进入土壤碳库的热点区期刊:Journal of EcologyIF: 5.3发表日期:2024.11.15第一作者:汪其同背景森林土壤是陆地生态系统最大的有机碳(SOC)库,高效发挥森林土壤碳汇功能是实现“双碳”战略目标的重要途径之一。相应地,科学认识森林土壤固碳过程与调控机制已成为当前森林生态学、土壤学领域重要的前沿基础科学问题与林业碳汇功能适应性管理的核心现实需求。近年来不断涌现的证据表明,微生物通过合成代谢而迭代积累的微生物残体很大程度上主导了SOC的长期积累和固持。其中,由于根源C持续输入在根系周围的根际微域形成了一个独特而又典型的微生物热点区,并伴随着更快的微生物生长和更强的微生物代谢活性,进而导致根际区微生物残体对长期SOC积累贡献能力比非根际区更为突出和明显。然而,目前大多研究通常将根际和非根际土壤视为一个均质有机体,而缺乏针对根际区SOC形成过程与稳定性机制的专一性试验研究,导致根际区土壤碳动态过程及其生态重要性在很大程度上未被探索和了解,已成为森林土壤碳汇功能变化认知最少且极为薄弱的关键环节之一。基于此,中国科学院成都生物研究所尹华军研究团队通过系统收集青藏高原典型高寒针叶林39个样点的根际和非根际土壤样品(图1),量化了根际和非根际土壤中有机碳和氨基糖的浓度,并通过计算根际相对于非根际土壤中增加的氨基糖与增加的有机碳的比例(RAS/SOC),评估了微生物残体对根际SOC积累的贡献程度。同时测定了根际土壤养分浓度和微生物生理性状,以揭示多变环境下根际微生物残体对SOC积累贡献的潜在微生物调控机制。图1  39个高寒针叶林采样点分布图我们假设:(1...
文体活动 MORE+
案例名称: 孵化中心
说明: 栢晖生物科技有限公司项目孵化中心成立于2015.06.01日,研发领域涉及生物试剂耗材、仪器、新产品开发及各生物科技服务类项目等。自成立以来,陆续吸引了大批专家教授加盟合作,并与全国数十家高校及知名企业建立了良好的合作关系。中心共有博士及以上学位骨干人员10人,专门负责公司新产品研发等工作,已成功研发出无线温度监控器及NO检测试剂盒等产品(详情见成功案例),另有细胞分选仪等三个项目正在积极孵化当中。
2017 - 05 - 31
案例名称: 孵化中心流程
说明:
2017 - 07 - 17
微信公众号
检测咨询热线
 
地址:四川省成都市成华区成宏路72号-四川检验检测创新科技园2号楼4层
          湖南省长沙市芙蓉区雄天路98号广发隆平创业园2栋6002
电话:028 8525 3068
传真:+86 0755-2788 8009
Copyright ©2005 - 2013 成都栢晖生物科技有限公司
犀牛云提供企业云服务